TY - CONF A1 - Auersch, Lutz T1 - Railway-induced ground and building vibrations – Analysis in frequency-wavenumber domain and fast prediction with approximate models N2 - A simple and fast prediction scheme is presented for train-induced ground and building vibrations. For the emission, finite-element boundary-element or multiple-beam-on-continuous-soil models of the track have been analysed and approximated by faster track-on-Winkler-soil models. The vehicle-track interaction due to irregularities yields the excitation forces. For the transmission of waves in the soil, the wavenumber integral of the compliance of layered soils has been evaluated. The calculation time is reduced for the prediction by using the solution of a homogeneous half-space with a frequency-dependent wave velocity (the dispersion) of the soil. For the immision, many 2 and 3-dimenisonal finite-element building models have been investigated, and a good approximation has been established by a 1-dimensional soil-wall-floor model. In addition, the axle sequence of the train, the quasi-static and the “scattered” response of the soil, and the wave propagation from a tunnel to a pile foundation of a building have been included. T2 - ISMA-Conference 2022 CY - Leuven, Belgium DA - 12.09.2022 KW - Ground vibration KW - Simple prediction KW - Vehicle-track interaction KW - Layered soil KW - Soil-building interaction KW - Soil-wall-floor model KW - Propagation from a tunnel KW - Tunnel-pile transfer PY - 2022 SP - 1 EP - 13 PB - KU Leuven CY - Leuven AN - OPUS4-56603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Mitigation of railway induced vibration at the track, in the transmission path through the soil and at the building N2 - This contribution presents some principles and some examples of the mitigation of railway-induced ground vibrations. The principles are different for the mitigation measures at the track, in the soil or at the building. Force transfer functions of isolated and un-isolated track-soil systems, reflected and transmitted wave amplitudes at walls and trenches in the soil, and the transfer of the (free-field) vibration amplitudes to the foundation amplitudes of the building are analysed. The mitigation effect can be calculated by exact or simplified formulas. Some examples with 3D (finite-element boundary-element), 2D (beam-on-support), and 1D track models, 2D and 1D soil models, detailed 3D building models and finite or infinite 1D wall-floor models are investigated to find out if simple models can be used for a satisfactory prediction of the mitigation effect. The 1D track examples show that the force transfer of the track without vehicle can be exactly calculated, whereas the total force transfer can be calculated approximately if appropriate wheelset masses per track length are used for the isolated and the un-isolated track. The mitigation effect of a filled trench is calculated by a 2D finite element model and the results compare with simple transmission formula if the stiffness per area rather than the wave impedances are used for the infill material. The base isolation of a building is analysed by a detailed 3D model and the results are similar to the analytic results of a single wall with floors on the soil. Other reduction measures as different floor and column dimensions are usually less effective so that the clearly best mitigation solution at a building is a partly or a complete base isolation. T2 - EURODYN 2017 CY - Rome, Italy DA - 10.09.2017 KW - Mitigation KW - Soil-building interaction KW - Base isolation KW - Ground vibration PY - 2017 AN - OPUS4-42488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Mitigation of railway induced vibration at the track, in the transmission path through the soil and at the building N2 - This contribution presents some principles and some examples of the mitigation of railway-induced ground vibrations. The principles are different for the mitigation measures at the track, in the soil or at the building. Force transfer functions of isolated and un-isolated track-soil systems, reflected and transmitted wave amplitudes at walls and trenches in the soil, and the transfer of the (free-field) vibration amplitudes to the foundation amplitudes of the building are analysed. The mitigation effect can be calculated by exact or simplified formulas. Some examples with 3D (finite-element boundary-element), 2D (beam-on-support), and 1D track models, 2D and 1D soil models, detailed 3D building models and finite or infinite 1D wall-floor models are investigated to find out if simple models can be used for a satisfactory prediction of the mitigation effect. The 1D track examples show that the force transfer of the track without vehicle can be exactly calculated, whereas the total force transfer can be calculated approximately if appropriate wheelset masses per track length are used for the isolated and the un-isolated track. The mitigation effect of a filled trench is calculated by a 2D finite element model and the results compare with simple transmission formula if the stiffness per area rather than the wave impedances are used for the infill material. The base isolation of a building is analysed by a detailed 3D model and the results are similar to the analytic results of a single wall with floors on the soil. Other reduction measures as different floor and column dimensions are usually less effective so that the clearly best mitigation solution at a building is a partly or a complete base isolation. T2 - X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017) KW - Mitigation KW - Soil-building interaction KW - Base isolation KW - Ground vibration PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-420869 SN - 1877-7058 VL - 199 SP - 2312 EP - 2317 PB - Elsevier CY - London AN - OPUS4-42086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz ED - Cunha, A. ED - Caetano, E. ED - Ribeiro, P. ED - Müller, G. T1 - Amplification and reduction phenomena of soil-building interaction by finite-element boundary-element calculations and simplified methods N2 - Vibration of normal apartment, office and production buildings, which are excited by technically induced ground vibrations are considered. Many wavelengths of the Rayleigh waves of the soil fit into the foundation dimensions. The related high discretization effort can nowadays be realized with detailed soil-structure interaction method. The combined finite-element boundary-element method is used here as a detatiled method. Simplified method can be used with less computation time, but these methods must be calibrated by exact results. One simplification is to extent the structure to infinity and to solve the problem by wavenumber domain methods. Another simplification is the use of a Winkler soil instead of the continuous soil. Usually, the Winkler parameters are not only soil parameters but depend also on the rigid or flexible foundation structure. Substructure methods use commercial FEM software for the building part. The contribution will show some detailed and some simplified results on large structural elements such as foundation plates, walls, storey plates on columns as well as results on complete buildings. The reduction of the ground vibration by stiff elements and the amplification due to floor or building resonances are discussed which are the most important phenomena of the soil-building interaction. T2 - EURODYN 2014 - 9th International conference on structural dynamics CY - Porto, Portugal DA - 30.06.2014 KW - Soil-building interaction KW - Foundation reduction KW - Floor amplification KW - FEBEM and simplified methods PY - 2014 SN - 978-972-752-165-4 SN - 2311-9020 SP - 591 EP - 597 AN - OPUS4-31163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -