TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Müller, Roger T1 - Measurements on the vehicle-track interaction and the excitation of railway-induced ground vibration N2 - Two railway measurement campaigns have been performed in Germany and Switzerland which yield insight in the vehicle-track-soil interaction. The campaign in Germany has included simultaneous measurement of vehicle, track, and soil vibrations during train runs with 16, 25, 40, 63, 80, 100, 125, 140, 160 km/h, and impulse measurements of the passenger car, three track sections and the soil. Two ballast tracks, one on the soil surface and one on a concrete bridge, have been investigated as well as a slab track in a tunnel. Ten different sites in Switzerland have been measured for soil properties and train-induced ground vibrations, which allow to determine the excitation forces of the railway traffic. New axle-box measurements at some of the Swiss sites have been analysed to get further experimental evidence. All these measurements have been evaluated to characterize the excitation processes. Relations between vehicle vibration and ground vibration can be observed. The vehicle vibrations, namely the accelerations of the wheelsets, yield the dynamic forces due to the passage over the irregularities of the vehicle and the track. The ground vibrations are correlated to these dynamic forces to a certain extent. Some mid-frequency ground vibration amplitudes, however, are higher than expected from the dynamic excitation forces. The experimental observations can be explained by an irregular response to the passage of the static loads, that means the passage of the static loads over an irregular ballast or soil. This correct understanding of the excitation processes is important for the prediction as well as for the mitigation of railway induced ground vibrations. T2 - EURODYN 2017 CY - Rome, Italy DA - 10.09.2017 KW - Vehicle-track interaction KW - Ground vibration KW - Track vibration KW - Railway measurement campaign KW - Axle box measurements PY - 2017 AN - OPUS4-42487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Mitigation of railway induced vibration at the track, in the transmission path through the soil and at the building N2 - This contribution presents some principles and some examples of the mitigation of railway-induced ground vibrations. The principles are different for the mitigation measures at the track, in the soil or at the building. Force transfer functions of isolated and un-isolated track-soil systems, reflected and transmitted wave amplitudes at walls and trenches in the soil, and the transfer of the (free-field) vibration amplitudes to the foundation amplitudes of the building are analysed. The mitigation effect can be calculated by exact or simplified formulas. Some examples with 3D (finite-element boundary-element), 2D (beam-on-support), and 1D track models, 2D and 1D soil models, detailed 3D building models and finite or infinite 1D wall-floor models are investigated to find out if simple models can be used for a satisfactory prediction of the mitigation effect. The 1D track examples show that the force transfer of the track without vehicle can be exactly calculated, whereas the total force transfer can be calculated approximately if appropriate wheelset masses per track length are used for the isolated and the un-isolated track. The mitigation effect of a filled trench is calculated by a 2D finite element model and the results compare with simple transmission formula if the stiffness per area rather than the wave impedances are used for the infill material. The base isolation of a building is analysed by a detailed 3D model and the results are similar to the analytic results of a single wall with floors on the soil. Other reduction measures as different floor and column dimensions are usually less effective so that the clearly best mitigation solution at a building is a partly or a complete base isolation. T2 - EURODYN 2017 CY - Rome, Italy DA - 10.09.2017 KW - Mitigation KW - Soil-building interaction KW - Base isolation KW - Ground vibration PY - 2017 AN - OPUS4-42488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Tracks with under-ballast plates and their mitigation of train induced ground vibration N2 - Experiments have been performed at a test site with six different tracks with under-ballast plates. Hammer excitations of the soil and the tracks as well as train passages have been measured. The experimental observations are as follows. 1. The natural soil is stiff gravel whereas the railway dam consists of softer material. 2. The track compliance indicates a soft ballast if no train is present to provide a confining pressure. 3. The track response to the train passages can be split into a low-frequency region which is ruled by the static loads and a high-frequency region which is ruled by dynamic loads. 4. The track responses to hammer and track excitation indicate the presence of many voids between the sleepers and the ballast. 5. The ground vibrations are highly influenced by the soil. Due to the stiff soil at the site, the hammer and train induced spectra have a considerable high-frequency content. 6. A reduction of the ground vibration has been observed in a low-frequency range. The mitigation effects of an under-ballast plate are also investigated by calculations of a wavenumber domain model. The under-ballast plate has an effect at low frequencies where it distributes the static load over a longer track section. The impulse of the axle passage is longer and the frequencies are lower due to the plate stiffness. The axle impulses could yield a low-frequency ground vibration in an irregular soil with a randomly varying stiffness. This low-frequency part of the ground vibration (the scattered axle impulses) seem to be reduced by the under-ballast plate. T2 - Int. Conf. Sound&Vibration CY - London, UK DA - 23.7.2017 KW - Railway vibration KW - Ballast tracks KW - Under-ballast plate KW - Ground vibration PY - 2017 AN - OPUS4-42489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Tracks with under-ballast plates and their mitigation of train induced ground vibration N2 - Experiments have been performed at a test site with six different tracks with under-ballast plates. Hammer excitations of the soil and the tracks as well as train passages have been measured. The experimental observations are as follows. 1. The natural soil is stiff gravel whereas the railway dam consists of softer material. 2. The track compliance indicates a soft ballast if no train is present to provide a confining pressure. 3. The track response to the train passages can be split into a low-frequency region which is ruled by the static loads and a high-frequency region which is ruled by dynamic loads. 4. The track responses to hammer and track excitation indicate the presence of many voids between the sleepers and the ballast. 5. The ground vibrations are highly influenced by the soil. Due to the stiff soil at the site, the hammer and train induced spectra have a considerable high-frequency content. 6. A reduction of the ground vibration has been observed in a low-frequency range. The mitigation effects of an under-ballast plate are also investigated by calculations of a wavenumber domain model. The under-ballast plate has an effect at low frequencies where it distributes the static load over a longer track section. The impulse of the axle passage is longer and the frequencies are lower due to the plate stiffness. The axle impulses could yield a low-frequency ground vibration in an irregular soil with a randomly varying stiffness. This low-frequency part of the ground vibration (the scattered axle impulses) seem to be reduced by the under-ballast plate. T2 - 24th International Congress on Sound and Vibration CY - London, UK DA - 23.7.2017 KW - Railway vibration KW - Ballast tracks KW - Under-ballast plate KW - Ground vibration PY - 2017 SP - 1 EP - 8 PB - IIAV CY - Auburn, USA AN - OPUS4-42091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Mitigation of railway induced vibration at the track, in the transmission path through the soil and at the building N2 - This contribution presents some principles and some examples of the mitigation of railway-induced ground vibrations. The principles are different for the mitigation measures at the track, in the soil or at the building. Force transfer functions of isolated and un-isolated track-soil systems, reflected and transmitted wave amplitudes at walls and trenches in the soil, and the transfer of the (free-field) vibration amplitudes to the foundation amplitudes of the building are analysed. The mitigation effect can be calculated by exact or simplified formulas. Some examples with 3D (finite-element boundary-element), 2D (beam-on-support), and 1D track models, 2D and 1D soil models, detailed 3D building models and finite or infinite 1D wall-floor models are investigated to find out if simple models can be used for a satisfactory prediction of the mitigation effect. The 1D track examples show that the force transfer of the track without vehicle can be exactly calculated, whereas the total force transfer can be calculated approximately if appropriate wheelset masses per track length are used for the isolated and the un-isolated track. The mitigation effect of a filled trench is calculated by a 2D finite element model and the results compare with simple transmission formula if the stiffness per area rather than the wave impedances are used for the infill material. The base isolation of a building is analysed by a detailed 3D model and the results are similar to the analytic results of a single wall with floors on the soil. Other reduction measures as different floor and column dimensions are usually less effective so that the clearly best mitigation solution at a building is a partly or a complete base isolation. T2 - X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017) KW - Mitigation KW - Soil-building interaction KW - Base isolation KW - Ground vibration PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-420869 SN - 1877-7058 VL - 199 SP - 2312 EP - 2317 PB - Elsevier CY - London AN - OPUS4-42086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir A1 - Müller, Roger T1 - Measurements on the vehicle-track interaction and the excitation of railway-induced ground vibration N2 - Two railway measurement campaigns have been performed in Germany and Switzerland which yield insight in the vehicle-track-soil interaction. The campaign in Germany has included simultaneous measurement of vehicle, track, and soil vibrations during train runs with 16, 25, 40, 63, 80, 100, 125, 140, 160 km/h, and impulse measurements of the passenger car, three track sections and the soil. Two ballast tracks, one on the soil surface and one on a concrete bridge, have been investigated as well as a slab track in a tunnel. Ten different sites in Switzerland have been measured for soil properties and train-induced ground vibrations, which allow to determine the excitation forces of the railway traffic. New axle-box measurements at some of the Swiss sites have been analysed to get further experimental evidence. All these measurements have been evaluated to characterize the excitation processes. Relations between vehicle vibration and ground vibration can be observed. The vehicle vibrations, namely the accelerations of the wheelsets, yield the dynamic forces due to the passage over the irregularities of the vehicle and the track. The ground vibrations are correlated to these dynamic forces to a certain extent. Some mid-frequency ground vibration amplitudes, however, are higher than expected from the dynamic excitation forces. The experimental observations can be explained by an irregular response to the passage of the static loads, that means the passage of the static loads over an irregular ballast or soil. This correct understanding of the excitation processes is important for the prediction as well as for the mitigation of railway induced ground vibrations. T2 - X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017) KW - Vehicle-track interaction KW - Ground vibration KW - Track vibration KW - Railway measurement campaign KW - Axle box measurements PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-420889 SN - 1877-7058 VL - 199 SP - 2615 EP - 2620 PB - Elsevier CY - London AN - OPUS4-42088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Simultaneous measurements of the vehicle, track, and soil vibrations at a surface, bridge, and tunnel railway line N2 - A complex measuring campaign has been performed including the simultaneous measurement of vehicle, track, and soil vibrations during train runs at 16, 25, 40, 63, 80, 100, 125, 140, 160 km/h, and impulse measurements of the passenger car, three track sections and the soil. A ballast track on the soil surface and on a concrete bridge have been investigated as well as a slab track in a tunnel. The evaluation and comparison of all these data shows a generally good agreement for all components if the strong low- and high-frequency cut-off characteristics of the layered and damped soil are incorporated. There is a strong causal correlation between the vehicle and the soil by the dynamic excitation forces and a weak relation between the track and the soil by the axle-sequence spectrum of the train. However, the similarity between the axle-impulse spectrum observed at the track and the spectra of the ground vibration lead to the special excitation component of “scattered axle impulses” which is pre-dominant at the far-field points of the soil. KW - Railway KW - Ground vibration KW - Vehicle-track interaction KW - Track-soil interaction KW - Measurements PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-410224 VL - 2017 IS - ID 1959286 SP - 1 EP - 18 PB - Hindawi CY - Indien AN - OPUS4-41022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -