TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Knothe, Esther A1 - Rücker, Werner ED - Cunha, A. ED - Caetano, E. ED - Ribeiro, P. ED - Müller, G. T1 - The dynamic behavior of railway tracks with under sleeper pads, finite-element boundary-element model calculations, laboratory tests and field measurements N2 - A variety of isolation measures exists to reduce the vibration in the neighbourhood of railway lines. They can be roughly classified as elastic or stiffening systems. There are the following elastic elements, rail pads or resilient fixation systems between rail and sleeper, under sleeper pads or sleeper shoes under the sleepers, and ballast mats under the ballast. Stiffening systems (plates) are used as slab tracks, floating slab tracks, or mass-spring systems. In the EU project “Railway induced vibration abatement solutions (RIVAS)”, elastic under sleeper pads have been investigated. The dynamic behaviour of the track and the surrounding soil has been calculated by the combined finite-element boundary-element method in a systematic parameter study. It has been shown that the mitigation effect can be improved by soft under sleeper pads or by heavy sleepers. Consequently, such track elements (soft under sleeper pads and heavy sleepers) have been thoroughly investigated in laboratory tests to establish the static and dynamic parameters as well as their serviceability. Finally, field tests at and near railway tracks with and without under sleeper pads have been performed. To determine the reduction effect of the isolated track, the ground vibrations excited by trains or artificial sources have been measured. The soil properties at the different sites have also been measured so that the comparison of the isolated and un-isolated track can take into account possible differences of the soil parameters. The contribution shows how the different (numerical, laboratory and field) methods and results can be combined to achieve an improved mitigation solution with soft under sleeper pads and heavy sleepers for ballasted and slab tracks. T2 - EURODYN 2014 - 9th International conference on structural dynamics CY - Porto, Portugal DA - 30.06.2014 KW - Railway track KW - Track-soil interaction KW - Mitigation KW - Under sleeper pads KW - Laboratory tests KW - Field tests KW - Ground vibration PY - 2014 SN - 978-972-752-165-4 SN - 2311-9020 SP - 805 EP - 812 AN - OPUS4-31164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - The use and validation of measured, theoretical, and approximate point-load solutions for the prediction of train-induced vibration in homogeneous and inhomogeneous soils N2 - The layered soil is calculated in the frequency wavenumber domain and the solutions for fixed or moving point or track loads follow as wavenumber integrals. The resulting point load solutions can be approximated by simple formula. Measurements yield the specific soil parameters for the theoretical or approximate solutions, but they can also directly provide the point-load solution (the transfer function of that site). A prediction method for the train-induced ground vibration has been developed, based on one of these site-specific transfer functions. The ground vibrations strongly depend on the regular and irregular inhomogeneity of the soil. The regular layering of the soil yields a cut-on and a resonance phenomenon, while the irregular inhomogeneity seems to be important for high-speed trains. The attenuations with the distance of the ground vibration, due to point-like excitations such as vibrator, hammer, or train-track excitations, were investigated and compared. All theoretical results were compared with measurements at conventional and high-speed railway lines, validating the approximate prediction method. PY - 2014 SN - 1027-5851 VL - 19 IS - 1 SP - 52 EP - 64 CY - St. Petersburg, Russia AN - OPUS4-30494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz ED - Cunha, A. ED - Caetano, E. ED - Ribeiro, P. ED - Müller, G. T1 - Amplification and reduction phenomena of soil-building interaction by finite-element boundary-element calculations and simplified methods N2 - Vibration of normal apartment, office and production buildings, which are excited by technically induced ground vibrations are considered. Many wavelengths of the Rayleigh waves of the soil fit into the foundation dimensions. The related high discretization effort can nowadays be realized with detailed soil-structure interaction method. The combined finite-element boundary-element method is used here as a detatiled method. Simplified method can be used with less computation time, but these methods must be calibrated by exact results. One simplification is to extent the structure to infinity and to solve the problem by wavenumber domain methods. Another simplification is the use of a Winkler soil instead of the continuous soil. Usually, the Winkler parameters are not only soil parameters but depend also on the rigid or flexible foundation structure. Substructure methods use commercial FEM software for the building part. The contribution will show some detailed and some simplified results on large structural elements such as foundation plates, walls, storey plates on columns as well as results on complete buildings. The reduction of the ground vibration by stiff elements and the amplification due to floor or building resonances are discussed which are the most important phenomena of the soil-building interaction. T2 - EURODYN 2014 - 9th International conference on structural dynamics CY - Porto, Portugal DA - 30.06.2014 KW - Soil-building interaction KW - Foundation reduction KW - Floor amplification KW - FEBEM and simplified methods PY - 2014 SN - 978-972-752-165-4 SN - 2311-9020 SP - 591 EP - 597 AN - OPUS4-31163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -