TY - JOUR A1 - Auersch, Lutz T1 - Vehicle-track-soil interaction and train-induced ground vibration – Theory and measurements in Germany, Switzerland and France N2 - Three measurement campaigns of train-induced ground vibrations are evaluated for the vehicle-track-soil interaction. Ground vibrations, track vibrations and vehicle vibrations have been measured for train passages and impulse excitation and compared with theoretical results. The soil and the track-soil system are calculated by wavenumber integrals. The influence of the vehicle is introduced by a substructure method. By comparing theory and measurement the different components of excitation force and ground vibration can be analysed, the quasi-static excitation, track-alignment errors, the out-of-roundness of wheels, the wheel and rail roughness, and moreover, scattered axle impulses and ineffective high-frequency parts of the wheelset accelerations and forces. KW - Vehicle-track-soil interaction KW - Train-induced ground vibration KW - Measurement campaigns KW - Wavenumber integrals KW - Components of excitation KW - Wheelset accelerations PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-486702 SN - 1742-6596 SN - 1742-6588 VL - 1264 SP - Artikel 012034-1 EP - 12 PB - IOP Publishing Ltd AN - OPUS4-48670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Train induced ground vibrations: different amplitude-speed relations for two layered soils N2 - Ground vibrations created by running high-speed trains at speeds between 100 and 320 km/h are calculated in detail using transfer functions to model the effects of the moving loads. These transfer functions for layered soils are obtained by integration in the wavenumber domain. The train-induced vibrations in a soil that is considered to consist of single layers of two slightly different soils are analysed for different excitations: for their spectra, attenuation laws and amplitude-speed relations. An important mid-frequency component is shifted through the cut-on region of the layered soil with an increase in the train speed. The cut-on frequency divides the response of the layered soil into a low-frequency low-amplitude range and a high-frequency high-amplitude range. This leads to completely different train speed dependencies for the two soil layers with strongly increasing amplitudes around the cut-on frequency and almost constant amplitudes beyond this frequency. All calculated results closely agree with ground vibration measurements at two corresponding sites, especially if the mid-frequency component is calculated by axle impulses. KW - Ground vibration KW - Layered soil KW - Wavenumber integrals KW - Moving load KW - Excitation forces KW - High-speed trains KW - Measured railway vibrations PY - 2012 U6 - https://doi.org/10.1177/0954409712437305 SN - 0954-4097 VL - 226 IS - 5 SP - 469 EP - 488 PB - Sage Publ. CY - London AN - OPUS4-31162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Dynamic interaction of various beams with the underlying soil - finite and infinite, half-space and Winkler models KW - Beam dynamics KW - Beam-soil interaction KW - Bending waves KW - Rayleigh wave KW - Railway track vibration KW - Elastic length KW - Wavenumber integrals PY - 2008 U6 - https://doi.org/10.1016/j.euromechsol.2008.02.001 SN - 0997-7538 SN - 1873-7285 VL - 27 IS - 5 SP - 933 EP - 958 PB - Elsevier CY - Paris AN - OPUS4-17867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -