TY - CONF A1 - Auersch, Lutz T1 - Zur Berechnung der Erschütterungsminderung von Eisenbahngleisen mit ein- und zweidimensionalen Modellen N2 - Eindimensionale Modelle des Gleises aus einem Schienenstützpunkt, zweidimensionale Modelle enthalten die Kraftverteilung der Schiene. Eindimensionale Modelle machen einen Fehler, weil sie eine zu große Fahrzeugmasse berücksichtigen. Man kann jedoch bei der Berechnung der Minderungswirkung von Gleiselementen eindimensionale Gleismodelle verwenden, um die Kraftübertragung des Gleises bzw. die Minderungswirkung des Gleises zu berechnen. Die Wechselwirkung mit dem Fahrzeug kann einfach mit der dynamischen Stützpunktsteifigkeit berechnet werden. Dabei muss die Stützpunktsteifigkeit mit einer charakteristischen Gleislänge multipliziert werden, die frequenz- und systemabhängig ist. T2 - Norm-Arbeitsausschuss Schwingungsminderung in der Umgebung von Verkehrswegen CY - Munich, Germany DA - 14.01.2020 KW - Richtige Fahrzeugmasse KW - Erschütterungsminderung KW - Elastische Gleiselemente KW - Rechenverfahren PY - 2020 AN - OPUS4-50268 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Characteristics of train passages over slab tracks from measurements and different track-soil models - Damage detection and ground vibration reduction N2 - The train passages over intact or damaged slab tracks on different soils have been calculated by the finite-element boundary-element or the wavenumber-domain method. The influence of track and soil parameters on the distribution of the track displacements and the soil forces has been analysed. The measured and calculated displacement time histories of train passages could be used to identify track damages such as lose sleepers or a lose track plate. The time histories and spectra of the soil forces can explain the measured ground vibration reduction of slab tracks. The calculated displacement and force distributions of slab tracks on continuous soils do not fulfil the Winkler hypothesis and Winkler models should not be used for track analysis. KW - Wavenumber domain KW - Continuous soil KW - Slab track KW - Soil forces KW - Track displacements KW - Track filter KW - Vehicle–track interaction PY - 2020 DO - https://doi.org/10.1177/0954409719835036 SN - 0954-4097 VL - 234 IS - 2 SP - 142 EP - 160 PB - Sage CY - London AN - OPUS4-50266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Das Prognosetool der BAM zur Emission, Transmission und Immission von Bahnerschütterungen N2 - Die gesamte Prognose wurde rechnerisch erfasst. Die Rechenverfahren sind einfach und schnell. Die Emission und die Immission verwendet Übertragungsmatrizen. Die Transmissionsrechnung beruht auf der Dispersion der Rayleighwelle. Die Verknüpfung erfolgt über die Anregungskraft auf den Boden und über die Freifeldamplitude am Gebäude. Es sind viele Eingabemöglichkeiten für Messdaten vorgesehen. Messungen können von einem Ort auf einen anderen Ort übertragen werden. T2 - 98. Sitzung des Normausschusses "Schwingungsminderung in der Umgebung von Verkehrswegen" CY - Online meeting DA - 07.05.2020 KW - Bahnerschütterungen KW - Prognose KW - Übertragungsmatrizen KW - Rayleighwellendispersion PY - 2020 AN - OPUS4-50748 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Realistic axle-load spectra from ground vibrations measured near railway lines N2 - Train-induced ground vibrations are generated by static and dynamic axle loads which can be calculated by vehicle-track-soil models and the vehicle and track irregularities. A fast prediction method has been developed which uses approximate transfer functions of layered soils. In the present contribution, this prediction method is used for the inverse calculation of the axle-load spectra from the measured ground vibration. The layered soils of some measuring sites show very differing ground vibration spectra in the amplitude range of 0.0001–1.0 mm/s as a consequence of the soft layer and stiff half-space, differing layer frequencies, as well as the far- and near-field measuring points. The back-calculation, however, yields axle-load spectra within a single order of magnitude around 1 kN. Axle-box measurements confirm the amplitude level of the axle loads. This standard axle-load spectrum can be used for a basic prediction at a new site. The separation of train and site-specific components allows a better evaluation of railway vibrations, for example, of different trains and different tracks. By eliminating the effects of differing soil characteristics, an important mid-frequency component has been found which lies between 8 and 32 Hz depending on the train speed. The origin of this dominant mid-frequency component is discussed using advanced prediction methods like moving constant loads, scattered axle impulses and axle-sequence spectra. PY - 2015 DO - https://doi.org/10.1080/23248378.2015.1076624 SN - 2324-8378 VL - 3 IS - 4 SP - 180 EP - 200 PB - Taylor & Francis CY - Abingdon AN - OPUS4-34768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Methods and phenomena of single and coupled floor vibrations - Measurements in apartment and office buildings N2 - A survey of the phenomena and methods for floor vibrations is presented. Experimental results of floor vibrations are shown for many floors in six different buildings. The signals have been evaluated for waves and modes by simple procedures. General rules have been established between the material and the area of a specific floor, and its local eigenfrequency. The damping values of the floor vibrations have been found between D = 1 and 10 % where somewhat higher values have been measured for wooden floors, and a weak correlation with the eigenfrequency has been established. The velocities of bending waves propagating in a storey and the attenuation with distance in the building have been analysed. A considerable transfer of vibration from one room to far away parts of the building has been found in the studied buildings with concrete and wooden floors. An example building has been analysed for modes of coupled floor bays. The strong coupling of similar neighbouring floor bays would yield a wide band of global resonance frequencies. The measured wooden floor exhibits a weak coupling of the neighbouring floor bays and a narrower band of eigenfrequencies. A special method has been tested with the impulse measurements to estimate the coupled eigenmodes in presence of the high damping. From the ambient measurement, a low-frequency vibration mode has been detected which includes the vibration of the whole building and the soil. The coupling of floors to other floors and the whole building is an important phenomenon of structural dynamics which should be observed for the prediction of vibration due to internal and external sources. PY - 2015 SN - 1351-010X VL - 22 IS - 2 SP - 81 EP - 108 PB - Multi-Science Publ. Co. CY - Brentwood AN - OPUS4-34839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Dynamik von Stahlbetonbrücken - Messprojekte aus dem Eisenbahn- und Straßenverkehr T2 - 8. Symposium "Experimentelle Untersuchungen von Baukonstruktionen" CY - Dresden, Deutschland DA - 2015-09-24 PY - 2015 AN - OPUS4-34339 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Comparison of different dispersion evaluation methods and a case history with the inversion to a soil model, related admittance functions, and the prediction of train-induced ground vibration N2 - Ground vibrations due to different technical sources are analysed in theory and experiment for the dispersion of Rayleigh waves and the admittance spectra. Both tasks are theoretically based on the same concept: The admittance function in frequency–wavenumber domain yields the dispersion as its maxima, and the admittance function in space domain is obtained by integrating it over the wavenumbers. On the experimental side, many signal processing methods have been applied to many sites and have been developed by the authors in the last 35 years, i.e., time-domain methods, including the cross-correlation method, and frequency-domain methods such as the spectral analysis of surface waves with two or multiple sensors, the wavenumber-transform method, and the spatial autocorrelation method. All methods are presented by their basic formula and by at least one example site. Different sensor arrays and deterministic and stochastic sources have been tested for the spatial autocorrelation method and the wavenumber-transform method at several sites. In addition, all frequency-domain methods are presented for a specific layered site comparing their quality. The evaluated dispersion curves are very similar, but a somewhat higher frequency range has been found for the fastest method, i.e., the multi-sensor spectral-analysis-of-surface-waves method. The theoretical solutions have been used for the inversion of the measured dispersion to the soil profile of the specific layered soil. The theoretical soil model has subsequently been used to predict the ground vibration spectra of hammer and railway excitation that exhibit a good agreement with the corresponding measurements. Thus, the contribution shows the benefit of active and passive seismic methods for the prediction of railway vibration, including a new version of the spatial autocorrelation method for technical vibrations. On the other hand, technical and namely railway vibrations are considered a seismic source for the exploration of near surface soils. PY - 2015 DO - https://doi.org/10.3997/1873-0604.2015011 SN - 1569-4445 VL - 13 IS - 2 SP - 127 EP - 142 PB - EAGE - European Association of Geoscientists & Engineers CY - Houten AN - OPUS4-33836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Romero, A. A1 - Galvín, y P. T1 - Respuesta dinámica de edificaciones producida por campos de ondas incidentes considerando la interacción suelo-estructura T1 - Building dynamic response due to incident wave field considering soil-structure interaction N2 - En este artículo se presentan 2 metodologías basadas en las formulaciones del Método de los Elementos de Contorno y del Método de los Elementos Finitos para estudiar el efecto de la interacción suelo-estructura en el comportamiento dinámico de edificaciones. Se ha estudiado la respuesta de un edificio de 3 plantas producida por un campo de ondas incidente con los 2 métodos propuestos. Los resultados obtenidos presentan un buen grado de acuerdo entre ellos. A partir de estos resultados se ha validado un modelo aproximado para estudiar este tipo de problemas y se han examinado diferentes tipologías de edificaciones. Las conclusiones alcanzadas muestran que la respuesta global de las estructuras se debe a la deformación de los forjados y depende de su superficie, de las condiciones de apoyo y del acoplamiento con los forjados de la misma planta. Del mismo modo, se ha observado un acoplamiento del comportamiento de pilares y forjados cuando las rigideces de ambos son similares.----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- This paper presents 2 methodologies based on the Boundary Element Method and the Finite Element Method to study soil-structure interaction effect on building behaviour. A 3-story building response induced by an incident wave field is studied using both methods. The results obtained show a good agreement. Then, a simplified model is validated from these methods and several buildings are analysed. Conclusions show that structural responses are due to floor deformation, and depend on their area, support conditions and coupling. A coupling between floors and columns when both elements have similar stiffness is also observed. KW - Interacción dinámica suelo-estructura KW - Resonancia en edificaciones KW - Acoplamiento Método de los Elementos de Contorno-Método de los Elementos Finitos KW - Dynamic soil-structure interaction KW - Resonant response KW - Boundary Element Method-Finite Element Method coupling PY - 2014 DO - https://doi.org/10.1016/j.rimni.2013.09.001 SN - 0213-1315 VL - 30 IS - 4 SP - 256 EP - 263 PB - Univ. CY - Barcelona AN - OPUS4-31579 LA - spa AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Slab track behaviour under train passage and hammer impact – Measurements at different sites and calculated track interaction with continuous soils N2 - This contribution intends to give an overview on the vibration behaviour of slab tracks in comparison of measurements and calculations and also by comparison of different track types at more than ten different measuring sites. In theory, tracks on continuous soil are calculated by the frequency-wavenumber domain method. In experiment, geophone measurements are transformed to displacement results. Two aspects of track behaviour are considered, the frequency-dependant compliance of the track, measured by hammer impact, and the deflection under a passing axle load. In theory, the response to a single axle can be calculated, whereas in experiment, only the passage of the whole train can be measured. For comparison of theory and experiment, the calculated deflection under a single axle is superposed to get the response of the whole train. As a result, the slab track characteristics are completely different from the ballast track characteristics where each axle can be seen in the time histories. The slab track has a more global behaviour where only a whole bogie can be found in the track response and moreover, the two neighbouring bogies are not completely separated. The measurement of the different track elements (rail, sleeper, track plate, base layer) and the frequency-dependant compliances with possible resonances yield further information About the properties of the track elements. The calculations show that the soil has the dominant influence on the amplitudes and the width of the track-plate displacements. In the measurement results, the following parameters are analysed: slab track vs. ballast track, different types of slab tracks, damaged slab tracks, different trains, switches at different measuring points, voided sleepers, an elastic layer, the mortar layer, and different soils at different places. Finally, a good agreement between measured and calculated results is found for the normal and some special (damaged, floating) slab tracks. KW - Slab track KW - Train passage KW - Hammer impact KW - Compliance function KW - Track deflection PY - 2020 UR - https://iiav.org/ijav/index.php?va=viewpage&vaid=177&id_number=95 DO - https://doi.org/10.20855/ijav.2020.25.31622 SN - 1027-5851 VL - 25 IS - 3 SP - 341 EP - 354 PB - International Institute of Acoustics and Vibration CY - Gliwice AN - OPUS4-51346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Vehicle-Track-Soil Interaction of Isolated, Un-isolated and Damaged Railway Tracks N2 - This article deals with two topics of vehicle-track-soil interaction, the mitigation of railway induced ground vibration by soft track elements, and the identification of track damage. Theoretical results have been achieved by a combined finite-element boundary-element method (FEBEM). The theoretical results are confronted with measurements at four sites. Improved mitigation effects have been found for soft rail pads under heavy sleepers. The insertion loss, however, can be too optimistic if a strong vehicle track resonance occurs for the un-isolated reference track. Two measurement sites show this strong vehicle-track resonance at about 80 Hz, which has been approximated by using the results of a wide parameter study including the rail pad, ballast, and soil stiffness, as well as the ballast model and the soil layering. – The detection of slab track damage is mainly based on the differences of the receptance or compliance functions. Theoretical results have been confirmed by measurements at one site where a loss of contact between track plate and base layer was visible. Measurements at a second site with a hidden damage have been compared with the theoretical results of a loose sleeper. The differences between intact (or repaired) and damaged tracks are strong enough to encourage the further development of this method for the identification of track damages. KW - Railway track KW - Track-soil interaction KW - Ground vibration KW - Mitigation KW - Under-sleeper pads KW - Track damage monitoring PY - 2020 DO - https://doi.org/10.4203/ijrt.6.3.2 SN - 2049-5358 VL - 2 IS - 20 SP - 21 EP - 49 PB - Saxe-Coburg Publications CY - London AN - OPUS4-51257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Simple and fast prediction of train-induced track forces, ground and building vibrations N2 - A simple and fast prediction scheme is presented for train induced ground and building vibrations. Simple models such as (1-dimensional) transfer matrices are used for the vehicle-track-soil interaction and for the building-soil interaction. The wave propagation through layered soils is approximated by a frequency-dependent homogeneous half-space. The prediction is divided into the parts “emission” (excitation by railway traffic), “transmission” (wave propagation through the soil) and “immission” (transfer into a building). The link between the modules is made by the excitation force between emission and transmission, and by the free-field vibration between transmission and immission. All formula for the simple vehicle-track, soil and building models are given in this article. The behaviour of the models is demonstrated by typical examples, that is the mitigation of train vibrations by elastic track elements, the low- and high-frequency cut-offs characteristic for layered soils, and the interacting soil, wall and floor resonances of multi-storey buildings. It is shown that the results of the simple prediction models can well represent the behaviour of the more time-consuming detailed models, the finite-element boundary-element models of the track, the wavenumber integrals for the soil, and the three-dimensional finite-element models of the building. In addition, measurement examples are given for each part of the prediction confirming that the methods provide reasonable results. As the prediction models are fast in calculation, many predictions can be done, for example to assess the environmental effect along a new railway line. The simple models have the additional advantage that the user needs to know only a minimum of parameters. So, the prediction is fast and user-friendly, but also theoretically and experimentally well-founded. KW - Railway induced vibration KW - Ground vibration KW - Layered soil KW - Building response KW - Excitation forces KW - Track and vehicle irregularities PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513340 DO - https://doi.org/10.1007/s40534-020-00218-7 SN - 2662-4745 VL - 28 IS - 3 SP - 232 EP - 250 PB - Springer AN - OPUS4-51334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - A mid-frequency component of train-induced ground vibration due to scattered axle impulses and the irregularities of the soil and ballast N2 - The passage of the train is dominated by the impulses of the static axle loads. The response of the regular homogeneous and irregular soils has been calculated by the finite-element method in frequency domain. The superposition of the impulse responses yields the quasi-static component of the ground vibration which is restricted to very low frequencies and to the close near-field of the track. In case of an irregular soil or ballast of which the stiffness varies randomly in space, a mid-frequency ground vibration component is generated by the scattering of the axle impulses. Measurements will be shown which prove the existence of the mid-frequency ground vibration component and the unique explanation by the scattered axle impulses: many international measurements with a raised mid-frequency component, axle-box measurements with a too low mid-frequency dynamic load, amplitude-speed dependencies which are incompatible with irregularity-induced dynamic loads, and ground vibration reductions due to stiff track elements. T2 - International Conference on Noise and Vibration Engineering (ISMA/USD) CY - Online meeting DA - 07.09.2020 KW - Ground vibration KW - Railway KW - Irregular soil KW - Irregular ballast KW - Axle impulses PY - 2020 SP - 2611 EP - 2625 PB - KULeuven CY - Leuven AN - OPUS4-51210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Rohrmann, R. T1 - Natural frequencies and modes of poles, beams, floors, road and rail bridges N2 - In the last three decades, the vibrations of many floors and bridges have been measured. The contribution shows some evaluation methods, experimental results and some modelling and theoretical results. Simple evaluation methods have been developed for single and coupled floors. Two coupled beams have been measured in good agreement with the theory. A more complex coupling model has been found for a large wooden floor in a castle consisting of six floor bays which correlates well with the measurements. Damaged and intact poles have been tested by their natural frequencies and damping values, and a fair correlation between the degree of damage and the shift of the frequency. Road bridges have been analysed in detail and some examples are presented. Railway bridges and trains are studied for resonant excitation. The risk of resonance can be estimated in frequency domain by using axle-sequence spectra of the train and the natural frequencies of the bridge. A measurement example shows the amplification, but even stronger the cancellation of the subsequent axle responses. Several high-speed trains and freight trains have been analysed for their potential resonance amplification. T2 - International Conference on Noise and Vibration Engineering (ISMA/USD 2020) CY - Online meeting DA - 07.09.2020 KW - Modalanalyse KW - Bauwerke KW - Bauteile KW - Brücken KW - Achsfolgespektren PY - 2020 SP - 1573 EP - 1585 PB - KULeuven CY - Leuven AN - OPUS4-51211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - A mid-frequency component of train-induced ground vibration due to scattered axle impulses and the irregularities of the soil and ballast N2 - The passage of the train is dominated by the impulses of the static axle loads. The response of the regular homogeneous and irregular soils has been calculated by the finite-element method in frequency domain. The superposition of the impulse responses yields the quasi-static component of the ground vibration which is restricted to very low frequencies and to the close near-field of the track. In case of an irregular soil or ballast of which the stiffness varies randomly in space, a mid-frequency ground vibration component is generated by the scattering of the axle impulses. Measurements will be shown which prove the existence of the mid-frequency ground vibration component and the unique explanation by the scattered axle impulses: many international measurements with a raised mid-frequency component, axle-box measurements with a too low mid-frequency dynamic load, amplitude-speed dependencies which are incompatible with irregularity-induced dynamic loads, and ground vibration reductions due to stiff track elements. T2 - International Conference on Noise and Vibration Engineering (ISMA/USD 2020) CY - Online meeting DA - 07.09.2020 KW - Ground vibration KW - Railway KW - Irregular soil KW - Irregular ballast KW - Axle impulses PY - 2020 AN - OPUS4-51212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Natural frequencies and modes of poles, beams, floors, road and rail bridges N2 - In the last three decades, the vibrations of many floors and bridges have been measured. The contribution shows some evaluation methods, experimental results and some modelling and theoretical results. Simple evaluation methods have been developed for single and coupled floors. Two coupled beams have been measured in good agreement with the theory. A more complex coupling model has been found for a large wooden floor in a castle consisting of six floor bays which correlates well with the measurements. Damaged and intact poles have been tested by their natural frequencies and damping values, and a fair correlation between the degree of damage and the shift of the frequency. Road bridges have been analysed in detail and some examples are presented. Railway bridges and trains are studied for resonant excitation. The risk of resonance can be estimated in frequency domain by using axle-sequence spectra of the train and the natural frequencies of the bridge. A measurement example shows the amplification, but even stronger the cancellation of the subsequent axle responses. Several high-speed trains and freight trains have been analysed for their potential resonance amplification. T2 - International Conference on Noise and Vibration Engineering (ISMA/USD 2020) CY - Online meeting DA - 07.09.2020 KW - Modalanalyse KW - Bauwerke KW - Bauteile KW - Brücken KW - Achsfolgespektren PY - 2020 AN - OPUS4-51213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Ziemens, Susanne T1 - The response of different buildings to free-field excitation – a study using detailed finite element models N2 - A study on building vibrations has been performed by finite element calculations. Family houses, multi-storey residential buildings, office buildings and office towers have been modelled in detail. The frequency-dependent response due to a free-field excitation has been evaluated for walls, columns and floors. The ratio of building amplitudes to free-field amplitudes starts with uB/u0 = 1 at zero frequency and is usually lower than 1 at 50 Hz, the end of the frequency range considered here. In between, amplifications occur due to several reasons. There are „soil resonances“ where the whole building is vibrating on the compliant soil, “column resonances” where the upper storeys are vibrating on the compliant columns, and the “floor resonances” where the floors are vibrating excited by their supports. Results are presented for all building types, but a special focus is set on office buildings. A parameter study shows the influence of the stiffness of the soil, the number of storeys, and the width of the building. It has been found that the “soil resonance” is strongly modified by the low-frequency floor resonances for the normal office building. The main resonance of a twenty-storey office tower is determined equally by the “soil mode” and the “column mode”. It is an important observation for these office buildings that the resonances can differ for different parts of the building such as the centre, the edge, the corner, and the core of the building. This leads to non-uniform vibration modes across the building, which look like another type of “floor resonance” and which have been observed in several real building projects. Experimental results will be shown which can confirm the calculated phenomena. T2 - EURODYN 2020 XI International Conference on Structural Dynamics CY - Online meeting DA - 13.11.2020 KW - Building vibration KW - Office building KW - Residential building KW - Soil-building resonance KW - Floor resonance KW - Column/wall resonance PY - 2020 SN - 978-618-85072-2-7 SP - 4560 EP - 4576 CY - Athen AN - OPUS4-51678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - The response of different buildings to free-field excitation – a study using detailed finite element models N2 - A study on building vibrations has been performed by finite element calculations. Family houses, multi-storey residential buildings, office buildings and office towers have been modelled in detail. The frequency-dependent response due to a free-field excitation has been evaluated for walls, columns and floors. The ratio of building amplitudes to free-field amplitudes starts with uB/u0 = 1 at zero frequency and is usually lower than 1 at 50 Hz, the end of the frequency range considered here. In between, amplifications occur due to several reasons. There are „soil resonances“ where the whole building is vibrating on the compliant soil, “column resonances” where the upper storeys are vibrating on the compliant columns, and the “floor resonances” where the floors are vibrating excited by their supports. Results are presented for all building types, but a special focus is set on office buildings. A parameter study shows the influence of the stiffness of the soil, the number of storeys, and the width of the building. It has been found that the “soil resonance” is strongly modified by the low-frequency floor resonances for the normal office building. The main resonance of a twenty-storey office tower is determined equally by the “soil mode” and the “column mode”. It is an important observation for these office buildings that the resonances can differ for different parts of the building such as the centre, the edge, the corner, and the core of the building. This leads to non-uniform vibration modes across the building, which look like another type of “floor resonance” and which have been observed in several real building projects. Experimental results will be shown which can confirm the calculated phenomena. T2 - EURODYN 2020 XI International Conference on Structural Dynamics CY - Online meeting DA - 23.11.2020 KW - Building vibration PY - 2020 AN - OPUS4-51679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Zur Prognose von Erschütterungen aus Bahntunneln N2 - Zur Erschütterungsausbreitung an oberirdischen Bahnlinien gibt es gute Übereinstimmungen zwischen Messungen und der Theorie geschichteter Böden. Bei der Interpretation der Ergebnisse spielt die Rayleigh-Welle eine große Rolle. Je nach Frequenz und Wellenlänge hat die Rayleigh-Welle eine bestimmte Eindringtiefe und erreicht damit mehr oder weniger steife Bodenschichten. Damit bekommt man eine frequenzabhängige Bodensteifigkeit für die Erschütterungsprognose. Für die Wellenausbreitung in der Tiefe statt an der Bodenoberfläche müssen eigene Gesetzmäßigkeiten gefunden werden. Es werden die Punktlastlösungen im Frequenz-Wellenzahlbereich und durch Integration über die Wellenzahlen berechnet. Man erhält die Wellenfelder, die Terzspektren für verschiedene Entfernungen und Frequenzen. Es wird die Tiefenlage und das Bodenmodell (homogen, geschichtet und kontinuierlich zunehmende Steifigkeit) variiert. Die Rayleigh-Welle verliert ihre Bedeutung und stattdessen kann die Vollraumlösung zur Interpretation und Prognose verwendet werden. Es werden die Halbraumlösung mit und ohne Rayleigh-Welle und die Vollraumlösung in der Tiefe diskutiert und verglichen. Neben der Wellenausbreitung (der Transmission) werden auch Effekte der Erschütterungsanregung (der Emission) und der Übertragung in Gebäude (der Immission) mit Hilfe der Finite-Element-Randelement-Methode berechnet. Die Verteilung der dynamischen Achslast durch die Tunnelsohle ergibt eine Minderung gegenüber der Punktlastanregung. Bei der Immission hat man keine Freifeldanregung wie an der Bodenoberfläche. Man muss entweder neben der Wellenamplitude (Verschiebung oder Schwinggeschwindigkeit) in der Tiefe auch die Spannung der ankommenden Welle berücksichtigen, oder man muss die Freifeldamplituden nach Bodenaushub berechnen. Die Rechenergebnisse deuten darauf hin, dass man als Freifeldanregung die zweifache Vollraumlösung ansetzen kann. T2 - Wiener Dynamik Tage 2021 CY - Vienna, Austria DA - 22.7.2021 KW - Erschütterungsausbreitung KW - Tunnel KW - Halbraum KW - Vollraum PY - 2021 SP - 1 EP - 11 PB - Steinhauser Consulting Engineers (STCE) CY - Wien AN - OPUS4-53253 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Zur Prognose von Erschütterungen aus Bahntunneln N2 - Zur Erschütterungsausbreitung an oberirdischen Bahnlinien gibt es gute Übereinstimmungen zwischen Messungen und der Theorie geschichteter Böden. Bei der Interpretation der Ergebnisse spielt die Rayleigh-Welle eine große Rolle. Je nach Frequenz und Wellenlänge hat die Rayleigh-Welle eine bestimmte Eindringtiefe und erreicht damit mehr oder weniger steife Bodenschichten. Damit bekommt man eine frequenzabhängige Bodensteifigkeit für die Erschütterungsprognose. Für die Wellenausbreitung in der Tiefe statt an der Bodenoberfläche müssen eigene Gesetzmäßigkeiten gefunden werden. Es werden die Punktlastlösungen im Frequenz-Wellenzahlbereich und durch Integration über die Wellenzahlen berechnet. Man erhält die Wellenfelder, die Terzspektren für verschiedene Entfernungen und Frequenzen. Es wird die Tiefenlage und das Bodenmodell (homogen, geschichtet und kontinuierlich zunehmende Steifigkeit) variiert. Die Rayleigh-Welle verliert ihre Bedeutung und stattdessen kann die Vollraumlösung zur Interpretation und Prognose verwendet werden. Es werden die Halbraumlösung mit und ohne Rayleigh-Welle und die Vollraumlösung in der Tiefe diskutiert und verglichen. Neben der Wellenausbreitung (der Transmission) werden auch Effekte der Erschütterungsanregung (der Emission) und der Übertragung in Gebäude (der Immission) mit Hilfe der Finite-Element-Randelement-Methode berechnet. Die Verteilung der dynamischen Achslast durch die Tunnelsohle ergibt eine Minderung gegenüber der Punktlastanregung. Bei der Immission hat man keine Freifeldanregung wie an der Bodenoberfläche. Man muss entweder neben der Wellenamplitude (Verschiebung oder Schwinggeschwindigkeit) in der Tiefe auch die Spannung der ankommenden Welle berücksichtigen, oder man muss die Freifeldamplituden nach Bodenaushub berechnen. Die Rechenergebnisse deuten darauf hin, dass man als Freifeldanregung die zweifache Vollraumlösung ansetzen kann. T2 - Wiener Dynamik Tage 2021 CY - Vienna, Austria DA - 22.07.2021 KW - Erschütterungsausbreitung KW - Tunnel KW - Halbraum KW - Vollraum PY - 2021 AN - OPUS4-53254 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz ED - Carletti, E. ED - Crocker, M. ED - Pawelczyk, M. ED - Tuma, J. T1 - Dynamic measurements during drop tests on stiff foundations N2 - Measurements at the foundation, the surrounding soil and nearby buildings have been done during several drop tests of different containers on different foundations. The first measurements have been done on a big foundation where it should be guaranteed that the foundation is rigid and the container is tested properly. It was controlled that the foundation does not absorb more than 2 percent of the energy of the container. Most of the drop energy is lost in shock absorbers. Later on, a smaller drop test facility has been built on the ground but inside an existing building. It had to be controlled by prediction and measurements that the drop test will not damage the building. Tests from different heights on soft, medium, and stiff targets have been done to find out rules which allow to identify acceptable and unacceptable drop tests. Later on, the biggest drop test facility has been built for masses up to 200 t. It was necessary for the design of the foundation to estimate the forces which occur during the drop tests. On the other hand, the acceptable tests should be selected and controlled by measurements where the impact duration is important. Different sensors, accelerometers, accelerometers with mechanical filters, geophones (velocity transducers), strain gauges, and pressure cells have been applied for these tasks. The signals have been transformed to displacements which proved to be best suited for the interpretation of the impact mechanism. Modell calculations have been used to check and understand the dynamic measurements. The simplest law is the conservation of the momentum which is a good approximation if the impact is short. If the soil under the foundation has an influence on the deceleration of the container, the maximum foundation velocity is lower than the simple estimation. The amplitudes of the foundation could also be estimated from the ground vibrations and their amplitude-distance law. T2 - 27th International Congress on Sound and Vibration (ICSV27) CY - Online meeting DA - 11.07.2021 KW - Drop test KW - Vibration measurement KW - Container loading KW - Foundation load PY - 2021 SN - 978-83-7880-799-5 SN - 2329-3675 SP - 1 EP - 8 PB - Silesian University Press CY - Gliwice, Poland AN - OPUS4-53255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -