TY - CONF A1 - Auersch, Lutz T1 - Characteristic Frequencies of Train-Induced Bridge, Track, Ground and Building Vibrations – Excitation and Mitigation N2 - The characteristic frequencies of train-induced vibrations are discussed in theory and experiment following the propagation of vibrations from the source to the receiver: 1. Out-of-roundness frequencies of the wheels, 2. sleeper-passage frequency, 3. the vehicle-track eigenfrequency, 4. band frequency of the impulses of the passing static axle loads, 5. car-length frequency and multiples, 6. axle-distance frequencies with two characteristic zeros, 7. bridge eigenfrequencies, 8. the cut-on frequency due to the layering, and 9. the cut-off frequency due to the material damping of the soil, 10. the building-soil eigenfrequency, 11. as a rigid building or flexible wall/column mode, 12. floor eigenfrequencies, 13. acoustic room resonances, 14. the „resonance“ frequency or cut-off frequency of a base isolation. Coincidences of some of these characteristic frequencies or frequency ranges can be typically problematic and mitigation measures at the track or at the building can be necessary. The bridge response to the passing static loads is deter¬mined by the axle-sequence spectrum, the eigenfrequency (transfer function) of the bridge, and the modal force or mode shape spectrum. The ground vibration has typically high frequencies for a stiff soil and low frequencies for a soft soil. The high amplitudes between the zeros of the axle-sequence spectrum are often measured in the ground vibrations, and they can be mitigated by soft support elements or a higher bending stiffness of the track. T2 - EVACES 2025 CY - Porto, Portugal DA - 02.07.2025 KW - Train-induced vibration KW - Axle-sequence spectrum KW - Vehicle-track eigenfrequency KW - Axle impulses PY - 2025 AN - OPUS4-63654 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Jürgen A1 - Eidenmüller, Moritz A1 - Auersch, Lutz T1 - Prognose von Erschütterungs- und Sekundärschall- Immissionen an Bahnlinien unter Verwendung von FEM Gebäudemodellen N2 - Die Errichtung von Wohngebäuden an Bahnstrecken erfordert Betrachtungen zur Begrenzung der Erschütterungs- und Sekundärschallimmissionen. Hierzu werden spektrale Prognoseverfahren ausgehend von Freifeldmessungen eingesetzt. Im rechnerischen Modell werden die Teilaspekte der Körperschallübertragung mit Hilfe von spektralen Übertragungsfunktionen beschrieben. Kenntnis über die Zusammenhänge dieser spektralen Übertragungsfunktionen erhält man im Wechselspiel von: - Messergebnissen von Körperschall- und Luftschallmessungen für einzelne Übertragungssysteme - Modellberechnungen mit der Finite-Elemente-Methode, Parameterstudien, Abgleich mit Messergebnissen - Modellberechnung mit der Finite-Elemente-Methode zur Wechselwirkung des schwimmenden Estrichs mit dem Gebäude T2 - VDI-Tagung Baudynamik CY - Würzburg, Germany DA - 02.04.2025 KW - Bahnerschütterungen KW - Gebäudemodelle KW - Schwimmender Estrich KW - Sekundärschall PY - 2025 SN - 978-3-18-092447-2 SN - 0083-5560 VL - 2447 SP - 301 EP - 314 PB - VDI-Verlag CY - Düsseldorf AN - OPUS4-62887 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Erschütterungsprognose mit KI? Schnelle Ersatzmodelle und physikbasiertes maschinelles Lernen in der Bauwerk-Boden-Dynamik N2 - Erschütterungsprognosen können mit sehr detaillierten Modellen durchgeführt werden. Dies ist sowohl bei der Erstellung des Modells (zum Beispiel für ein Finite-Element-Modell für Boden und Bauwerk), als auch bei der Berechnung zeitaufwändig, von einigen Minuten für die Wellenausbreitung in geschichteten Böden mit Wellenzahlintegralen bis zu mehreren Stunden für Randelementlösungen für die korrekte Bauwerk-Boden-Wechselwirkung. Hier sind einfache und schnelle Ersatzmodelle von Vorteil, die die Ergebnisse der detaillierten Berechnungen gut wiedergeben. Diese Ersatzmodelle können vollständig auf physikalischen Überlegungen beruhen (white-box Modelle) oder mit Hilfe von maschinellem Lernen aus einer Vielzahl von detaillierten Rechenergebnissen erzeugt werden (black-box Modelle). Erfahrungen mit black-box Modellen zeigen, dass es sinnvoll ist das maschinelle Lernen mit physikalischen Informationen anzureichern (grey-box Modelle). Es werden Anwendungsmöglichkeiten für physikbasiertes maschinelles Lernen im Bereich von Bahnerschütterungen aufgezeigt, die Erschütterungsemission durch die Fahrzeug-Fahrweg-Wechselwirkung, die Wellenausbreitung im Boden, die Erschütterungsimmission in Gebäude, Gleisschäden und das Monitoring von Eisenbahnbrücken. T2 - VDI-Tagung Baudynamik CY - Würzburg, Germany DA - 02.04.2025 KW - Bahnerschütterungen KW - Emissionsmodell KW - Immissionsmodell KW - Transmissionsmodell KW - Tunnelausbreitung KW - Gleisüberwachung PY - 2025 SN - 978-3-18-092447-2 SN - 0083-5560 VL - 2447 SP - 53 EP - 64 PB - VDI-Verlag CY - Düsseldorf AN - OPUS4-62886 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Erschütterungsprognose mit KI? Schnelle Ersatzmodelle und physikbasiertes maschinelles Lernen in der Bauwerk-Boden-Dynamik N2 - Erschütterungsprognosen können mit sehr detaillierten Modellen durchgeführt werden. Dies ist sowohl bei der Erstellung des Modells (zum Beispiel für ein Finite-Element-Modell für Boden und Bauwerk), als auch bei der Berechnung zeitaufwändig, von einigen Minuten für die Wellenausbreitung in geschichteten Böden mit Wellenzahlintegralen bis zu mehreren Stunden für Randelementlösungen für die korrekte Bauwerk-Boden-Wechselwirkung. Hier sind einfache und schnelle Ersatzmodelle von Vorteil, die die Ergebnisse der detaillierten Berechnungen gut wiedergeben. Diese Ersatzmodelle können vollständig auf physikalischen Überlegungen beruhen (white-box Modelle) oder mit Hilfe von maschinellem Lernen aus einer Vielzahl von detaillierten Rechenergebnissen erzeugt werden (black-box Modelle). Erfahrungen mit black-box Modellen zeigen, dass es sinnvoll ist das maschinelle Lernen mit physikalischen Informationen anzureichern (grey-box Modelle). Es werden Anwendungsmöglichkeiten für physikbasiertes maschinelles Lernen im Bereich von Bahnerschütterungen aufgezeigt, die Erschütterungsemission durch die Fahrzeug-Fahrweg-Wechselwirkung, die Wellenausbreitung im Boden, die Erschütterungsimmission in Gebäude, Gleisschäden und das Monitoring von Eisenbahnbrücken. T2 - VDI-Tagung Baudynamik CY - Würzburg, Germany DA - 02.04.2025 KW - Bahnerschütterungen KW - Emissionsmodell KW - Immissionsmodell KW - Transmissionsmodell KW - Tunnelausbreitung KW - Gleisüberwachung PY - 2025 AN - OPUS4-62889 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz ED - Papadrakakis, Manolis T1 - Frequency-wavenumber method for the wave propagation through the soil and the soil-structure interaction of railway tracks and building foundations near railway lines N2 - In soil-structure interaction, the soil and the (flexible) structures are modelled as elastic continua. The partial differential equations of elasticity can be transformed to algebraic equations in frequency-wavenumber domain where they can be solved by matrix methods. The results for the soil and a structure can be coupled in frequency-wavenumber domain, and the solution in space domain is obtained by an infinite wavenumber integral (the back-transformation). This method has several applications for the prediction of the emission, transmission and immission of railway-induced vibrations. The wave propagation in homogeneous or layered soils is calculated for surface and tunnel lines by a single wavenumber integration (transmission). The response of ballast or slab tracks (for the emission problem) and the foundation stiffness (for the immission problem) need an additional integration across the track or foundation width. In wavenumber domain, tracks and foundations of infinite length are analysed. Finite structures can be calculated by finite element models where the soil is calculated by the boundary element method. The Green’s functions for the boundary element method are calculated by a wavenumber integration as for the transmission problem. Some example results for all these tasks will be shown. The immission into buildings will be analysed in detail, and the effect of stiff slab foundations and (basement) walls on the incoming wavefield is quantified in a parameter study. The transfer function (the amplitude ratio) structure to free field usually starts with 1 at 0 Hz and decreases continuously with frequency. The reduction is due to the structural stiffness against wave deformation which turns to be higher than the stiffness of the soil, for example above the structure-soil coincidence frequency of the slab foundation. The reduction is better for a high structural stiffness and for a low soil stiffness. Walls are stiffer than plates for the relevant frequency range, but even walls and especially low basement walls are not infinitely rigid and can follow the wave deformation to a certain extent. These basic rules from frequency-wavenumber analysis can well be used for real building projects near railway lines where stiff foundations can be an alternative reduction method to the commonly used base isolation by elastic elements. T2 - COMPDYN 2025 CY - Rhodos, Greece DA - 15.06.2025 KW - Frequency-wavenumber method KW - Wave propagation KW - Soil-structure interaction KW - Building foundations KW - Mitigation measures PY - 2025 SP - 1 EP - 15 PB - NTUA CY - Athen AN - OPUS4-63470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Frequency-wavenumber method for the wave propagation through the soil and the soil-structure interaction of railway tracks and building foundations near railway lines N2 - In soil-structure interaction, the soil and the (flexible) structures are modelled as elastic continua. The partial differential equations of elasticity can be transformed to algebraic equations in frequency-wavenumber domain where they can be solved by matrix methods. The results for the soil and a structure can be coupled in frequency-wavenumber domain, and the solution in space domain is obtained by an infinite wavenumber integral (the back-transformation). This method has several applications for the prediction of the emission, transmission and immission of railway-induced vibrations. The wave propagation in homogeneous or layered soils is calculated for surface and tunnel lines by a single wavenumber integration (transmission). The response of ballast or slab tracks (for the emission problem) and the foundation stiffness (for the immission problem) need an additional integration across the track or foundation width. In wavenumber domain, tracks and foundations of infinite length are analysed. Finite structures can be calculated by finite element models where the soil is calculated by the boundary element method. The Green’s functions for the boundary element method are calculated by a wavenumber integration as for the transmission problem. Some example results for all these tasks will be shown. The immission into buildings will be analysed in detail, and the effect of stiff slab foundations and (basement) walls on the incoming wavefield is quantified in a parameter study. The transfer function (the amplitude ratio) structure to free field usually starts with 1 at 0 Hz and decreases continuously with frequency. The reduction is due to the structural stiffness against wave deformation which turns to be higher than the stiffness of the soil, for example above the structure-soil coincidence frequency of the slab foundation. The reduction is better for a high structural stiffness and for a low soil stiffness. Walls are stiffer than plates for the relevant frequency range, but even walls and especially low basement walls are not infinitely rigid and can follow the wave deformation to a certain extent. These basic rules from frequency-wavenumber analysis can well be used for real building projects near railway lines where stiff foundations can be an alternative reduction method to the commonly used base isolation by elastic elements. T2 - COMPDYN 2025 CY - Rhodos, Greece DA - 15.06.2025 KW - Frequency-wavenumber method KW - Wave propagation KW - Soil-structure interaction KW - Building foundations KW - Mitigation measures PY - 2025 AN - OPUS4-63468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Soil–structure interaction and damping by the soil - effects of foundation groups, foundation flexibility, soil stiffness and layers N2 - In many tasks of railway vibration, the structure, that is, the track, a bridge, and a nearby building and its floors, is coupled to the soil, and the soil–structure interaction and the damping by the soil should be included in the analysis to obtain realistic resonance frequencies and amplitudes. The stiffness and damping of a variety of foundations is calculated by an indirect boundary element method which uses fundamental solutions, is meshless, uses collocation points on the boundary, and solves the singularity by an appropriate averaging over a part of the surface. The boundary element method is coupled with the finite element method in the case of flexible foundations such as beams, plates, piles, and railway tracks. The results, the frequency-dependent stiffness and damping of single and groups of rigid foundations on homogeneous and layered soil and the amplitude and phase of the dynamic compliance of flexible foundations, show that the simple constant stiffness and damping values of a rigid footing on homogeneous soil are often misleading and do not represent well the reality. The damping may be higher in some special cases, but, in most cases, the damping is lower than expected fromthe simple theory. Some applications and measurements demonstrate the importance of the correct damping by the soil. KW - Soil–structure interaction KW - Soil dynamics KW - Radiation damping of the soil KW - Rigid foundation KW - Flexible foundation KW - Foundation groups KW - Boundary element method KW - Vibration measurement PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-627007 DO - https://doi.org/10.3390/vibration8010005 SN - 2571-631X VL - 8 IS - 5 SP - 1 EP - 28 PB - MDPI CY - Basel, Schweiz AN - OPUS4-62700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Modal analysis of road and rail bridges for damage detection and resonance prediction N2 - In the 1980s, the Federal Institute of Material Research and Testing started with modal analysis measurements of some bridges before and after repair. For one of the bridges, a structural health monitoring was installed 1994 which is still working up to now. It has been modified and extended several times. The monitoring was extended from the critical span to three neighbouring spans. A modal analysis of the whole bridge with seven spans have been done three times, twice together with EMPA of Switzerland. Additional calibration measurements have been done and additional evaluation procedures have been implemented for the monitoring of the steadily increasing loads from the road traffic. Additional sensors were installed such as strain gauges, crack-width, and temperature sensors. The strong influence of the temperature on the natural frequencies has been studied over the years. Later, a temperature compensation has been established and a weak aging trend has been found in the monitoring data. Now, the bridge will be demolished and replaced by a new bridge. Some results of this long-term monitoring will be shown and possible damages (changes of the pre-stress or the support structure) will be discussed. A second application of modal analysis will be demonstrated: the prediction of the resonances due to passing trains. The response of a bridge to passing trains can be calculated in frequency domain as the multiplication of three spectra, the axle sequence spectrum of the train, the transfer function of the bridge, and the modal force spectrum of a single passing load. A resonance occurs if a maximum of the train spectrum coincides with the maximum of the bridge spectrum. The amplitude at this resonance is strongly influenced by the modal force spectrum which is identical to the frequency or wavenumber spectrum of the corresponding mode shape. Therefore, modal analysis from calculation, impact measurements, wind and train measurements are necessary for the prediction of the resonance occurrence and amplification. Examples of mode shape spectra for single or multi-span bridges with simply supported or continuous spans will be shown, and some relations between mode shapes and resonance amplifications will be concluded. T2 - 11th International Operational Modal Analysis Conference (IOMAC) CY - Rennes, France DA - 20.05.2025 KW - Bridge monitoring KW - Multi-span bridges KW - Damage detection KW - Resonance PY - 2025 AN - OPUS4-63472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Rohrmann, Rolf ED - Döhler, Michael T1 - Modal analysis of road and rail bridges for damage detection and resonance prediction N2 - In the 1980s, the Federal Institute of Material Research and Testing started with modal analysis measurements of some bridges before and after repair. For one of the bridges, a structural health monitoring was installed 1994 which is still working up to now. It has been modified and extended several times. The monitoring was extended from the critical span to three neighbouring spans. A modal analysis of the whole bridge with seven spans have been done three times, twice together with EMPA of Switzerland. Additional calibration measurements have been done and additional evaluation procedures have been implemented for the monitoring of the steadily increasing loads from the road traffic. Additional sensors were installed such as strain gauges, crack-width, and temperature sensors. The strong influence of the temperature on the natural frequencies has been studied over the years. Later, a temperature compensation has been established and a weak aging trend has been found in the monitoring data. Now, the bridge will be demolished and replaced by a new bridge. Some results of this long-term monitoring will be shown and possible damages (changes of the pre-stress or the support structure) will be discussed. A second application of modal analysis will be demonstrated: the prediction of the resonances due to passing trains. The response of a bridge to passing trains can be calculated in frequency domain as the multiplication of three spectra, the axle sequence spectrum of the train, the transfer function of the bridge, and the modal force spectrum of a single passing load. A resonance occurs if a maximum of the train spectrum coincides with the maximum of the bridge spectrum. The amplitude at this resonance is strongly influenced by the modal force spectrum which is identical to the frequency or wavenumber spectrum of the corresponding mode shape. Therefore, modal analysis from calculation, impact measurements, wind and train measurements are necessary for the prediction of the resonance occurrence and amplification. Examples of mode shape spectra for single or multi-span bridges with simply supported or continuous spans will be shown, and some relations between mode shapes and resonance amplifications will be concluded. T2 - 11th International Operational Modal Analysis Conference (IOMAC) CY - Rennes, France DA - 20.05.2025 KW - Bridge monitoring KW - Multi-span bridges KW - Damage detection KW - Resonance PY - 2025 SP - 39 EP - 46 PB - INRIA CY - Rennes AN - OPUS4-63473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Song, Jiaojiao T1 - Analysis of intact and damaged (floating) slab tracks by finite-element boundary-element models and by measurements N2 - The damage detection and repair control have become important tasks for slab tracks. Different intact and damaged slab tracks have been investigated theoretically and experimentally for train passages and hammer impacts. The following damages have been considered: The loss of contact between the sleeper and the track slab, between the track slab and the base slab, and between the base slab and the base layer. At first, a slab track with a gap between the track slab and the base layer has been calculated by the combined finite-element boundary-element method which correctly incorporates the behaviour of the infinite soil. The basic results are the track displacements of the rail, the track slab, and the base layer along the track which are caused by a single axle load. These solutions are properly superposed for to get the complete train load. The influence of track and soil parameters and of the track damage has been analysed. For the intact track, the compliance of the soil is dominant whereas the track bending stiffness becomes more important for the damaged track. By comparing the calculated results with the measurements, the length of the gap could be quantified. A slab track with a loose sleeper (without contact to the supporting track slab) was analysed by the transfer function between the displacements and the hammer force (receptance functions) where a resonance appeared in case of the damage. Differences between the different track elements confirmed the detection of the damage. A floating slab track with a thin rubber layer has been investigated for a possible gap between the base slab and the base layer. The behaviour of the intact track has been calculated by a wavenumber-domain method, and the same behaviour has been found in the measurements at several track sections, indicating that there is no damage. Finally, a floating slab track with steel springs and viscous fluid dampers has been measured in the Tongji laboratory. The modes of the floating track slab and the transfer function with corresponding resonances have been calculated and successfully compared with results from wheelset drop tests. T2 - Third International Conference on Rail Transportation (ICRT2024) CY - Shanghai, China DA - 07.08.2024 KW - Railway track KW - Damage KW - Vibration measurement KW - Finite element method KW - Boundary element method KW - Frequency response function KW - Moving load response KW - Floating slab track PY - 2025 SN - 978-0-7844-8594-1 SP - 591 EP - 600 AN - OPUS4-61267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Characteristic Frequencies of Train-Induced Bridge, Track, Ground and Building Vibrations – Excitation and Mitigation N2 - The characteristic frequencies of train-induced vibrations are discussed in theory and experiment following the propagation of vibrations from the source to the receiver: 1. Out-of-roundness frequencies of the wheels, 2. sleeper-passage frequency, 3. the vehicle-track eigenfrequency, 4. band frequency of the impulses of the passing static axle loads, 5. car-length frequency and multiples, 6. axle-distance frequencies with two characteristic zeros, 7. bridge eigenfrequencies, 8. the cut-on frequency due to the layering, and 9. the cut-off frequency due to the material damping of the soil, 10. the building-soil eigenfrequency, 11. as a rigid building or flexible wall/column mode, 12. floor eigenfrequencies, 13. acoustic room resonances, 14. the „resonance“ frequency or cut-off frequency of a base isolation. Coincidences of some of these characteristic frequencies or frequency ranges can be typically problematic and mitigation measures at the track or at the building can be necessary. The bridge response to the passing static loads is deter¬mined by the axle-sequence spectrum, the eigenfrequency (transfer function) of the bridge, and the modal force or mode shape spectrum. The ground vibration has typically high frequencies for a stiff soil and low frequencies for a soft soil. The high amplitudes between the zeros of the axle-sequence spectrum are often measured in the ground vibrations, and they can be mitigated by soft support elements or a higher bending stiffness of the track. T2 - EVACES 2025 CY - Porto, Portugal DA - 02.07.2025 KW - Train-induced vibration KW - Vehicle excitation KW - Track response KW - Bridge resonance KW - Ground vibration KW - Soil-building transfer KW - Floor resonance KW - Axle-sequence spectrum KW - Vehicle-track eigenfrequency KW - Axle impulses PY - 2025 SN - 978-3-031-96113-7 DO - https://doi.org/10.1007/978-3-031-96106-9_77 VL - 2025 SP - 1 EP - 8 PB - Springer CY - Cham, Schweiz AN - OPUS4-63655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Mitigation of railway-induced ground vibration by soft support elements and a higher bending stiffness of the track N2 - The mitigation of train-induced ground vibrations by track solutions is investigated by calculations and measurements. The calculation by a wavenumber domain method includes the correct vehicle–track interaction and the correct track–soil interaction. Some theoretical results for elastic elements and an increased bending stiffness of the track are presented where the force transfer of the track and the vehicle–track interaction are calculated for the high-frequency dynamic mitigation, and the force distribution along the track is calculated for the low-frequency mitigation which is due to the smoother impulses from the passing static loads. Measurement results for the ground vibration near isolated and un-isolated tracks are given for several under-sleeper pads, for under-ballast mats, and for several under-ballast plates and ballast troughs. The elastic elements yield a resonance frequency of the vehicle–track–soil system and a high-frequency reduction of the dynamic axle loads which depends mainly on the softness of the pads or mats and which can be improved by a higher sleeper mass. In addition, all troughs and most of the soft elements show a low-frequency reduction which is attributed to the scattered impulses of the static axle loads. Besides this main contribution of the article, the problem of a soft reference section on a different soil is discussed and recommendations for better ground vibration measurements of mitigation effects are given. KW - Railway track KW - Elastic elements KW - Bending stiffness KW - Ground vibration KW - Mitigation KW - Lowfrequency reduction KW - Axle impulses PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612568 DO - https://doi.org/10.3390/app14031244 VL - 14 IS - 3 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-61256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Some resonance effects of non-typical trains and railway bridges investigated by a frequency-domain method N2 - The resonances of railway bridges have often been analysed for short bridges under periodical high-speed trains, for simply supported one-span bridges, for the fundamental bridge mode, and by time-domain analyses. Many time-consuming calculations have been performed to establish simplified rules for standards. In this contribution, the passage of different (existing, new and hypothetic) trains over different (simply supported, integral, multi-span, continuous) bridges will be analysed in frequency domain by using three separated spectra with the purpose to get a better physical insight in the phenomena. At first, the excitation spectrum of the modal forces is built by the mode shape and the passage time of the train over the bridge. The second spectrum is the frequency response function of the bridge which include the modal frequency, damping and mass. The third part is the spectrum of the axle sequence of an arbitrary train which is not limited to periodical or specific (conventional, articulated, regular or standard) trains and which does not include any bridge parameters. The final solution in frequency domain is obtained as the product of these three complex, strongly varying spectra for the dominating bridge mode or in general as the sum of these products over all relevant bridge modes. The time domain solution is obtained via the inverse Fourier transform, and the resulting time histories have been successfully compared with some measurement results. The method is applied to the vertical and torsional modes of a mid-long single-span bridge on elastomeric bearings under standard train speeds, to a short two-span bridge under high-speed traffic, and to a long three-span integral bridge under long periodical freight trains. Different resonance and cancellation effects have been found for systematically varied train speeds according to the axle sequence of the whole train which is dominated by the two locomotives in that case. To be more specific, the first torsional mode of the mid-span bridge is excited for a train speed of 100 km/h whereas the second bending mode is excited for a train speed of 160 km/h. In both cases, the other mode is suppressed by the minima of the axle-distance spectra. In addition, the case of the German high-speed train ICE4, a Maglev train on a viaduct, and the very high-speed hyperloop case will be discussed briefly. In general, it is shown that resonance effects are also worth to be studied for freight and passenger trains with lower speeds. KW - Rail bridge KW - Resonance KW - ICE4 KW - MAGLEV KW - Hyperloop KW - Continuous bridge KW - Multi-span bridge PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612595 DO - https://doi.org/10.1088/1742-6596/2647/25/252014 VL - 2647 SP - 1 EP - 11 PB - IOP Publishing AN - OPUS4-61259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Railway vibration – fast physics-based models for the prediction of ground vibration and the identification of track damage N2 - The following applications of machine learning will be discussed: 1. The prediction of the wave propagation from a railway line (completely physics based for surface lines, physics-based machine learning for tunnel lines) 2. The track behaviour for the emission of train-induced ground vibration (physics based for homogeneous soil, machine learning for layered soil) 3. Track damage detection and quantification from frequency response functions and moving load responses 4. Bridge damage detection and localisation from modal analysis and moving load 5. The use of axle-box acceleration for the identification of track/sub-soil condition and bridge resonances. The prediction of railway vibration usually needs time-consuming finite element, boundary element and wavenumber domain calculations. For a user-friendly prediction software however, fast calculations are needed. Several time-consuming detailed calculations have been used to develop simpler and fast models for the surface railway lines. The more challenging prediction from tunnel lines will be attacked by purely mathematical and by physics-informed machine learning. The dynamic stiffnesses of isolated or un-isolated railway tracks from detailed calculations with a continuous soil have been approximated with the simpler Winkler soil. The vehicle-track resonance (P2 resonance) rules the effect of the mitigation measures, and it can also be used for the on-board monitoring of the track and sub-soil condition. For the identification of track damage such as gaps between sleepers, track slabs and layers, detailed models with a continuous soil have been updated to get the best fit to the measured frequency response functions from hammer tests and the deformation pattern from the moving load response. Whereas the track damage can be locally identified, this is more difficult for bridges where the modal analysis gives mainly global information. The influence lines of the inclination for statically passing vehicles (locomotive, truck, compaction roller) have been used to localise bridge damage (stiffness variations). The on-board monitoring of rail bridges needs special conditions (regular trains with special speeds) to excite and measure the bridge resonance. T2 - 11th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam, Germany DA - 10.06.2024 KW - Vibration prediction KW - Track damage detection KW - Human and machine learning KW - Wave propagation KW - Surface line KW - Tunnel KW - Bridge resonance PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612462 DO - https://doi.org/10.58286/29865 SN - 1435-4934 SP - 1 EP - 9 PB - NDT.net CY - Kirchwald AN - OPUS4-61246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Prediction of ground vibrations from rail tunnels finite element, boundary element and wavenumber calculations N2 - The prediction of ground and building vibrations has been established for surface lines and has now been extended to tunnel lines. The wave propagation in homogeneous or layered soils (the transmission) is calculated by an integration in wavenumber domain. The wave amplitudes at different distances and for different frequencies will be analysed for the following situations. 1. The horizontal propagation from a surface point to a surface point constitutes the basic rules. 2. The horizontal propagation from a source point at depth to a receiver point at depth which is related to a building with a deep basement or on a pile foundation. 3. The propagation from depth to the surface, which is the normal case for free-field measurements, has some different characteristics, for example a weaker attenuation with the horizontal distance from the source, which can be approximated by the full-space solution and the reflection rules for incident waves. The emission from a tunnel structure has been calculated by a finite-element model of the tunnel combined with a boundary-element model of the soil giving the reduction compared to a point-load excitation. The immission has been analysed by finite-element models of tunnel-soil-building systems for examples of research and consultancy work. Measurement results from a high-speed and a metro line confirm some of the established rules. T2 - Recent Advance in Structural Dynamics (RASD) CY - Southampton, UK DA - 01.07.2024 KW - Ground vibration KW - Building vibration KW - Railway tunnel KW - Wavenumber method KW - Finite element method KW - Boundary element method PY - 2024 AN - OPUS4-61230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Prediction of ground vibrations from rail tunnels –finite-element, boundary-element and wavenumber calculations N2 - The prediction of ground and building vibrations has been established for surface lines and has now been extended to tunnel lines. The wave propagation in homogeneous or layered soils (the transmission) is calculated by an integration in wavenumber domain. The wave amplitudes at different distances and for different frequencies will be analysed for the following situations. 1. The horizontal propagation from a surface point to a surface point constitutes the basic rules. 2. The horizontal propagation from a source point at depth to a receiver point at depth which is related to a building with a deep basement or on a pile foundation. 3. The propagation from depth to the surface, which is the normal case for free-field measurements, has some different characteristics, for example a weaker attenuation with the horizontal distance from the source, which can be approximated by the full-space solution and the reflection rules for incident waves. The emission from a tunnel structure has been calculated by a finite-element model of the tunnel combined with a boundary-element model of the soil giving the reduction compared to a point-load excitation. The immission has been analysed by finite-element models of tunnel-soil-building systems for examples of research and consultancy work. Measurement results from a high-speed and a metro line confirm some of the established rules. KW - Railway tunnel KW - Ground vibration KW - Building vibration KW - Wavenumber integral KW - Full-space solution KW - Reflection at the surface PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-627015 DO - https://doi.org/10.1088/1742-6596/2909/1/012013 SN - 1742-6596 VL - 2909 SP - 1 EP - 12 PB - IOP Publishing CY - London AN - OPUS4-62701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir T1 - System and damage identification for cars, floors and roofs, bridges, tracks and foundations by modal analyses, frequency response functions and moving-load responses N2 - The following objects have been analysed by frequency response functions and moving load responses. A simple modal analysis which is based on the transformed and weighted system equations has been tested for an automotive test car and for many floors in many buildings to get some rules for their natural frequency and damping. Moreover, six neighboured equal, weakly coupled, wooden floors in a castle have been measured by ambient and hammer excitation, and a special method to extract the different mode shapes of the closely spaced natural frequencies has been developed and tested. Different foundations, for which the soil-structure interaction is generally important, have been measured and compared with finite-element boundary-element models of varying soil properties. Similarly by FEBEM calculations, damages in railway tracks have been identified from flexibility functions (frequency response functions) and from the moving-load responses to normal train operation. Rail and foot bridges have been measured during train passages and by quasi-static tests with moving vehicles. The repeatability of the inclinometer measurements has been checked for different passages, passage directions, and measurement campaigns at a six-span foot bridge. Two rail bridges at the Hanover-Würzburg high-speed line have been measured and evaluated for integrity and for the train- and speed-dependent bridge resonances. The relation between the multi-axle and the single-axle excitation can be solved in frequency domain by the axle-sequence spectrum of the vehicle or the whole train. The single axle response has been used to identify track and bridge damages in laboratory and in situ. T2 - 10th International Operational Modal Analysis Conference (IOMAC 2024) CY - Naples, Italy DA - 21.05.2024 KW - Weakly coupled floors KW - Bridge passage KW - Track damage KW - Foundation-soil interaction KW - Flexibility function KW - Moving load response PY - 2024 SN - 978-3-031-61420-0 DO - https://doi.org/10.1007/978-3-031-61421-7_19 SN - 2366-2557 SP - 187 EP - 195 PB - Springer Nature Switzerland AG CY - Cham, Schweiz AN - OPUS4-61248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Die Minderung von Bahnerschütterungen – Messergebnisse aus Österreich, Deutschland und der Schweiz N2 - Die Minderung von Bahnerschütterungen neben Eisenbahnstrecken ist an vielen Stellen gemessen worden. Dabei ist neben der hochfrequenten Wirkung von elastischen Gleiselementen wie Schienenlager, Schwellensohlen und Unterschottermatten auch oft eine tieffrequente Minderung beobachtet worden. Diese tieffrequente Minderung wird interpretiert und mit der weiteren Lastverteilung der statischen Last erklärt. T2 - Wiener Dynamik Tage CY - Vienna, Austria DA - 25.07.2027 KW - Bahnerschütterungen KW - Minderung KW - Messungen KW - Schwellensohlen KW - Unterschottermatte KW - Gleistrog PY - 2024 AN - OPUS4-61228 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Vibraciones de estructuras multi vanos como forjados, puentes ferroviarios y de carreteras N2 - Se han analizado las frecuencias y las formas modales de las estructuras multi-vanos en teoría y mediante ocho ejemplos medidos. Como consecuencia por los puentes de ferrocarril, se han calculado las amplitudes de resonancia en el dominio de las frecuencias con los espectros del tren, de la fuerza modal, y de la resonancia. Para los vanos (idénticos) continuos resp. simplemente apoyados el acoplamiento es fuerte resp. debil, las frecuencias son separadas resp. agrupadas, las formas modales son globales y globales, la resonancia es menor resp. menor – (igual). Los resultados en el dominio del tiempo se obtiene con la transformación inversa de Fourier o – más robusto – el valor de eficaz por la superposición. T2 - DinEst 2024 Third Conference on Structural Dynamics CY - Seville, Spain DA - 12.09.2024 KW - Multi-span bridges KW - Train passage KW - Resonance PY - 2024 AN - OPUS4-61225 LA - spa AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - The excitation, propagation, and mitigation of train-induced ground vibrations from the axle impulses on the track N2 - Train-induced vibrations in soft ground usually have a strong low-frequency component. This component has a characteristic spectrum which is related to the axle sequence and the speed of the train. Its attenuation with distance is weaker than the attenuation for higher frequencies, and it always dominates the far-field ground vibration. Narrow-band frequency analyses clearly show that this ground vibration component is due to the static axle loads. Axle box vibrations have a different characteristic where the first out-of-roundness of the wheels is the only remarkable low-frequency component. Therefore, the dynamic axle loads from wheel and track irregularities are not the reason for the strong ground vibration component. The moving static axle loads generate the quasi-static response of the soil at very low frequencies and at very near distances. A part of the original impulse spectrum is scattered when it propagates through an inhomogeneous ballast and soil with a randomly varying stiffness. The axle impulses are smoother for a higher bending stiffness or a lower support stiffness (under sleeper pads, under ballast mats) of the track. This mitigation of the ground vibration will be demonstrated by measurements at three sites in Switzerland as well as the characteristic of the soil and axle-box vibrations. T2 - Railways Conference CY - Prague, Czech Republic DA - 02.09.2024 KW - Soil and vehicle measurements KW - Train passages KW - Ground vibration KW - Excitation mechanisms KW - Mitigation KW - Under sleeper pads KW - Under ballast mat PY - 2024 AN - OPUS4-61226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -