TY - CONF A1 - Auersch, Lutz ED - Vogiatzis, Konstantinos T1 - Modes and waves of coupled roof or floor structures in historical and modern buildings N2 - Long wooden floor beams above a ball room in an old historical palace have been analysed experimentally. The eleven beams are weakly coupled by three layers of floor boards. It has been investigated if the state (the stiffness) of the wooden beams can be determined by vibration measurements of global or preferably local modes. Hammer, heel-drop and ambient excitations have been used. The vibration modes of the structure show dominating local deformations if an impact excitation is applied. This is understood as the positive superposition of several modes which yield the maximum at the excitation point but a cancellation at more distant points. Natural modes have been estimated from these vibration modes by standard and special methods which were necessary for the high damping of the wooden floor. It has been found that all floor beams contribute to each natural mode even for a weak coupling of the beams. In addition to the modal discussion, the impact tests have also been analysed for the wave propagation and amplitude attenuation with distance. The coupling of floor beams has been studied theoretically by an analytic multiple-beam model where the coupling by translational or rotational springs and by a common support motion has been assumed. T2 - 23. International Congress on Sound and Vibration CY - Athen, Greece DA - 10.07.2016 KW - modal analysis KW - floor vibration KW - wave analysis PY - 2016 SN - 978-960-99226-2-3 SN - 2329-3675 SP - Paper 318, 1 EP - 8 AN - OPUS4-37090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Modes and waves of coupled roof or floor structures in historical and modern buildings N2 - Long wooden floor beams above a ball room in an old historical palace have been analysed experimentally. The eleven beams are weakly coupled by three layers of floor boards. It has been investigated if the state (the stiffness) of the wooden beams can be determined by vibration measurements of global or preferably local modes. Hammer, heel-drop and ambient excitations have been used. The vibration modes of the structure show dominating local deformations if an impact excitation is applied. This is understood as the positive superposition of several modes which yield the maximum at the excitation point but a cancellation at more distant points. Natural modes have been estimated from these vibration modes by standard and special methods which were necessary for the high damping of the wooden floor. It has been found that all floor beams contribute to each natural mode even for a weak coupling of the beams. In addition to the modal discussion, the impact tests have also been analysed for the wave propagation and amplitude attenuation with distance. The coupling of floor beams has been studied theoretically by an analytic multiple-beam model where the coupling by translational or rotational springs and by a common support motion has been assumed. T2 - 23. International Congress on Sound and Vibration CY - Athen, Greek DA - 10.07.2016 KW - wave analysis KW - floor vibration KW - modal analysis PY - 2016 AN - OPUS4-37091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - The dynamic behavior of railway tracks with under sleeper pads, finite-element boundary-element model calculations, laboratory tests and field measurements N2 - Results from the calculation of the tracks have been presented. The compliances for the different under sleeper pads have been intensely discussed by the experts. Laboratory tests and field tests have been shortly presented to demonstrate the comprehensive approach of the BAM. N2 - Es werden die Arbeiten der BAM zu schweren Schwellen und weichen Schwellensohlen vorgestellt. Es wurden Berechnungen zum Schwingungsverhalten und zur Erschütterungsminderung durchgeführt. Laborversuche dienten dazu, die elstischen Eigenschaften der Schwellensohlen und die Dauerhaftigkeit der schweren Schwellen zu ermitteln. In Feldversuchen wurde die Minderungswirkung mit Schwingeranregung und mit Zuganregung ermittelt. T2 - Treffen "Schwellen und Schwellensohlen" CY - Berlin, Germany DA - 25.02.2016 KW - sleeper pads KW - railway track KW - ground vibration KW - mitigation PY - 2016 AN - OPUS4-37103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Realistic axle-load spectra for the prediction of ground vibrations form rail traffic N2 - Train passages induce static and dynamic forces on the track, the train-induced vibrations propagate through the soil and excite neighbouring buildings. The problem of train vibrations is divided into the parts emission, which is the excitation by railway traffic (the present contribution), transmission, which is the wave propagation through the soil, and immission, which is the transfer into a building, - The calculation of the axle loads are based on the vehicle-track-soil interaction. This interaction uses the dynamic stiffness of the vehicle (the inertia of the wheelset) and the dynamic stiffness of the track-soil System. Based on various time consuming finite-element boundary-element calculations, an approximate track-soil model has been established. The vehicle-track-soil analysis yields several transfer functions between the various geometric or stiffness irregularities and the axle loads of the train. Geometric irregularities of the vehicle (the wheels) and the track (rail surface and track alignment) are the simplest components. Geometric irregularities of the subsoil (trackbed irregularities) have to be transferred to effective irregularities at rail level. The bending stiffness of the track is filtering out the short-wavelength contribution. Stiffness irregularities occur due to random variations in the bailast or the subsoil, which must also be transferred to effective track irregularities, and due to the discrete rail support on sleepers. The axle loads due to the effective track errors from stiffness variations have their specific vehicle-track transfer function. - All necessary formula for the prediction of axle-load spectra will be presented. The prediction method is compared with axle-box measurements at a Standard ballasted track. Moreover, ground Vibration measurements at numerous sites are exploited for the axle-load spectra and the Validation of the prediction method. T2 - ICSV22 - 22nd International congress on sound and vibration CY - Florence, Italy DA - 12.07.2015 PY - 2015 SN - 978-88-88942-48-3 SN - 2329-3675 SP - 1 EP - 8 AN - OPUS4-33781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Force and ground vibration reduction of railway tracks with elastic elements N2 - The reduction of train-induced ground vibration by elastic elements such as rail pads and sleeper pads has been analyzed by a combined finite-element boundary-element method. The dynamic compliance of the track, the transfer function of the total force on the ground and the ground vibration ratios have been calculated for a variety of isolated and un-isolated track systems. It has been found that the soil force transfer, which describes the excitation force of the soil, is an appropriate quantity to predict the reduction of the ground vibration and the effectiveness of isolated tracks. All force transfer functions of isolated tracks display a vehicle–track resonance where the wheelset on the compliant track is excited by wheel and track irregularities. At higher frequencies, considerable reductions of the amplitudes are observed as the benefit of the resilient element. The influence of the stiffness of the rail or sleeper pads, the ballast and the soil, and the mass of the sleeper and the wheelset on the resonance frequency and the reduction has been investigated. Sleeper pads are advantageous due to the higher mass that is elastically supported compared to the rail-pad track system. The combination of elastic rail and sleeper pads has been found to be disadvantageous, as the second resonance occurs in the frequency range of intended reduction. KW - Railway KW - Track KW - Rail pad KW - Sleeper pad KW - Force transfer KW - Ground vibration KW - Reduction PY - 2015 DO - https://doi.org/10.1177/1077546313507099 SN - 1077-5463 SN - 1741-2986 VL - 21 IS - 11 SP - 2246 EP - 2258 PB - Sage Science Press CY - Thousand Oaks, CA, USA AN - OPUS4-33682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz ED - Papadrakakis, M. ED - Papadopoulos, V. ED - Plevris, V. T1 - Fast computation of train-induced vibrations in homogeneous and layered soils N2 - The computation of the wave propagation in homogeneous and layered soils can be performed by a numerical integration in wavenumber domain. The numerical difficulties of an infinite integral and an integrand with poles can be solved. But if this computation must be repeated for many distances, many frequencies, many loads, or many soil models, it becomes a time consuming task which is not acceptable for a user-friendly prediction tool for railway induced ground vibration. Therefore, an approximate method for the computation of the wave field has been developed. The computation consists of several steps. At first, an approximate dispersion profile is calculated according to rules which have been derived from exact solutions. Secondly, the dispersion is used to achieve the amplitude for a certain frequency and a certain distance by calculating the approximate solution of a corresponding homogeneous half-space. Thirdly, three layer corrections are added which include lowfrequency near-field effects, high-frequency far-field effects, and a resonance amplification around the layer frequency. This procedure yields the wave field due to a point load. For a train load, many of these point-load responses have to be summed up, and a frequencydependant reduction factor has to be multiplied to incorporate the effect of the load distribution along and across the track. - The prediction method is applied to real sites, and the appropriate soil models are identified by approximating the measured transfer functions (frequency-dependant amplitudes) which is presented as an alternative to the approximation of the dispersion (frequency-dependant wave velocities). These examples demonstrate the general behavior of layered soils: the low amplitudes of the stiff half-space at low frequencies, the high amplitudes of the softer layer at high frequencies, the strong increase of amplitudes and a possible resonance amplification at mid frequencies. The material damping of the layer yields a strong attenuation of the amplitudes with the distance for high frequencies. The response depends strongly on the resonance or layer frequency which is shown for different layer depths and velocities always in good agreement with measurements. The layer frequency can be of immense influence if train-speed effects are analysed in a layered soil. The good agreement with many measurements in this contribution as well as in the references validates the prediction of ground vibration based on the theory of a layered half-space. T2 - COMPDYN 2015 - 5th International conference on computational methods in structural dynamics and earthquake engineering CY - Crete Island, Greece DA - 25.05.2015 PY - 2015 DO - https://doi.org/10.7712/120115.3381.959 SP - 66 EP - 82 AN - OPUS4-33683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Simultaneous measurements of the vehicle, track, and soil vibrations at a surface, bridge, and tunnel railway line N2 - A complex measuring campaign has been performed including the simultaneous measurement of vehicle, track, and soil vibrations during train runs at 16, 25, 40, 63, 80, 100, 125, 140, 160 km/h, and impulse measurements of the passenger car, three track sections and the soil. A ballast track on the soil surface and on a concrete bridge have been investigated as well as a slab track in a tunnel. The evaluation and comparison of all these data shows a generally good agreement for all components if the strong low- and high-frequency cut-off characteristics of the layered and damped soil are incorporated. There is a strong causal correlation between the vehicle and the soil by the dynamic excitation forces and a weak relation between the track and the soil by the axle-sequence spectrum of the train. However, the similarity between the axle-impulse spectrum observed at the track and the spectra of the ground vibration lead to the special excitation component of “scattered axle impulses” which is pre-dominant at the far-field points of the soil. KW - Railway KW - Ground vibration KW - Vehicle-track interaction KW - Track-soil interaction KW - Measurements PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-410224 DO - https://doi.org/10.1155/2017/1959286 VL - 2017 IS - ID 1959286 SP - 1 EP - 18 PB - Hindawi CY - Indien AN - OPUS4-41022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rücker, Werner A1 - Auersch, Lutz T1 - A user-friendly prediction tool for railway induced ground vibrations: Emission - transmission - immission T2 - 9th IWRN - International Workshop on Railway Noise CY - Munich, Germany DA - 2007-09-04 PY - 2007 SP - S.4.2, 1 EP - 6 PB - International Workshop on Railway Noise CY - München AN - OPUS4-18592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Dynamic stiffness of foundations on inhomogeneous soils for a realistic prediction of vertical building resonance N2 - The aim of this contribution is a practice-oriented prediction of environmental building vibrations. A Green's functions method for layered soils is used to build the dynamic stiffness matrix of the soil area that is covered by the foundation. A simple building model is proposed by adding a building mass to the dynamic stiffness of the soil. The vertical soil-building transfer functions with building-soil resonances are calculated and compared with a number of measurements of technically induced vibrations of residential buildings. In a parametrical study, realistic foundation geometries are modeled and the influence of incompressible soil, deep stiff soil layering, soft top layers, and increasing soil stiffness with depth is analyzed. All these special soil models reduce the resonant frequency compared to a standard homogeneous soil. A physically motivated model of a naturally sedimented soil has a stiffness increasing with the square root of the depth and yields a foundation stiffness that decreases with foundation area considerably stronger than the relatively insensitive homogeneous soil. This soil model is suited for the Berlin measuring sites and reproduces satisfactorily the experimental results. KW - Stiffness KW - Foundations KW - Predictions KW - Resonance KW - Vibration PY - 2008 DO - https://doi.org/10.1061/(ASCE)1090-0241(2008)134:3(328) SN - 1090-0241 SN - 1943-5606 VL - 134 IS - 3 SP - 328 EP - 340 PB - American Society of Civil Engineers CY - Reston, Va. AN - OPUS4-17394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - The effect of critically moving loads on the vibrations of soft soils and isolated railway tracks N2 - The dynamic response of the railway track is strongly influenced by the underlying soil. For a soft soil and very high train speeds or for a very soft soil and regular train speeds, the train speed can be close to the speed of elastic waves in the soil. This paper presents a detailed study of the so-called “moving-load effect”, i.e. an amplification of the dynamic response due to the load movement, for the tracks on soft soil. The analysis is carried out by evaluating the related integrals in the wavenumber domain. The influence of the load speed is quantified for a large set of parameters, showing that the effect on the soil vibration is reduced with increase of the frequency, track width and inverse wave velocity. Therefore, the moving-load effect associated with vibratory train loads is negligible whereas the amplification associated with the moving dead weight of the train can be significant. The strong moving-load effect on a perfectly homogeneous soil, however, can be strongly diminished by a layered or randomly varying soil situation. This theoretical result is affirmed by measurements at a test site in Germany where the trains run on a very soft soil at a near-critical speed. The results for soft soils are compared with experimental and theoretical results for a stiff soil. It is found that the influence of the stiffness of the soil is much stronger than the moving-load effect. This holds for the soil vibration as well as for the track vibration which both show a minor dependence on the load speed but a considerable dependence on the soil stiffness in theory and experiment. Railway tracks can include soft isolation elements such as rail pads, sleeper shoes and ballast mats. For these types of isolation elements and normal soil conditions, the influence of the load speed is usually negligible. There is only one isolation measure for which the moving load may be effective: a track which is constructed as a heavy mass–spring system. The resonance of this track system is shifted to lower frequencies and amplitudes for increasing train speed. A critical train speed can be reached if the mass–spring system has a marginal bending stiffness along the track. PY - 2008 DO - https://doi.org/10.1016/j.jsv.2007.10.013 SN - 0022-460X SN - 1095-8568 VL - 310 IS - 3 SP - 587 EP - 607 PB - Academic Press CY - London AN - OPUS4-17395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Auersch, Lutz ED - Tizani, W. T1 - Vibration of buildings on pile groups due to railway traffic - finite-element boundary-element, approximating and prediction methods N2 - A finite-element boundary-element software for the dynamic interaction of flexible structures and the soil has been extended for pile foundation. The boundary element method for the soil uses the Green´s functions of the layered half-space which have been generalised for interior loads. Pile groups of 10 to 20 piles of different arrays are analysed and compared with single piles. Simplified models have been developed for a user-friendly, practice oriented prediction software for railway induced ground and building vibration. T2 - ICCCBE 2010 - International conference on computing in civil and buildung engineering CY - Nottingham, UK DA - 2010-06-30 KW - Boundary elements KW - Soil-structure interaction KW - Pile foundations KW - Prediction software PY - 2010 SN - 978-1-907284-60-1 IS - Paper 275 SP - 549 EP - 554 PB - Nottingham University Press AN - OPUS4-21832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Wave propagation in the elastic half-space due to an interior load and its application to ground vibration problems and buildings on pile foundations N2 - A method is presented which allows to calculate the wave-field in a homogeneous or layered soil in case of a dynamic interior load. The wave propagation along the surface, the distribution of the response over the depth, the horizontal propagation at different depths and the vertical downward propagation are shown and compared with the simpler surface solution of the half-space and the interior solution of the full-space. The complete wave-field (Green's function) is applied to the dynamic behaviour of piles and pile groups by use of a boundary element formulation. The stiffness, damping and – typically for piles – mass of different groups of piles are presented. Different group effects occur for lines, circles, grids, parallels and crosses of piles, which can be regarded as oscillations around average values. Moreover, the piles and pile groups behave almost like a damper for most of the frequencies. A building on a pile group that is excited by ground vibration due to surface or interior loads shows a reduction of the wave-field due to kinematic and inertial soil–building interaction effects. The results presented lead to simplified descriptions of the wave-field due to interior loads and of the soil–pile–building interaction which can be used for the prediction of technically induced vibration. KW - Wave propagation KW - Interior load KW - Dynamic pile and pile group stiffness KW - Kinematic and inertial soil-pile-building KW - Interaction PY - 2010 DO - https://doi.org/10.1016/j.soildyn.2010.04.003 SN - 0261-7277 SN - 0267-7261 VL - 30 IS - 10 SP - 925 EP - 936 PB - Elsevier Science CY - Amsterdam AN - OPUS4-21833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Two- and three-dimensional methods for the assessment of ballast mats, ballast plates and other isolators of railway vibration PY - 2006 SN - 1027-5851 VL - 11 IS - 4 SP - 167 EP - 176 CY - St. Petersburg, Russia AN - OPUS4-18953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Vehicle dynamics and dynamic excitation forces of railway induced ground vibration T2 - 21th International symposium on dynamics of vehicles on roads and tracks CY - Stockholm, Sweden DA - 2009-08-17 PY - 2009 SP - 1 EP - 12 CY - Stockholm, Sweden AN - OPUS4-21088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Theoretical and experimental excitation force spectra for railway-induced ground vibration: vehicle-track-soil interaction, irregularities and soil measurements N2 - Excitation force spectra are necessary for a realistic prediction of railway-induced ground vibration. The excitation forces cause the ground vibration and they are themselves a result of irregularities passed by the train. The methods of the related analyses - the wavenumber integration for the wave propagation in homogeneous or layered soils, the combined finite-element boundary-element method for the vehicle-track-soil interaction - have already been presented and are the base for the advanced topic of this contribution. This contribution determines excitation force spectra of railway traffic by two completely different methods. The forward analysis starts with vehicle, track and soil irregularities, which are taken from literature and axle-box measurements, calculates the vehicle-track interaction and gets theoretical force spectra as the result. The second method is a backward analysis from the measured ground vibration of railway traffic. A calculated or measured transfer function of the soil is used to determine the excitation force spectrum of the train. A number of measurements of different soils and different trains with different speeds are analysed in that way. Forward and backward analysis yield the same approximate force spectra with values around 1 kN for each axle and third of octave. KW - Railway forces KW - Vehicle-track interaction KW - Irregularities KW - Rail roughness KW - Track alignment KW - Wheel out-of-roundness KW - Ground vibration KW - Soil transfer function PY - 2010 DO - https://doi.org/10.1080/00423110802691515 SN - 0042-3114 VL - 48 IS - 2 SP - 235 EP - 261 PB - Taylor & Francis CY - Basingstoke, Hants. AN - OPUS4-22361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Technically induced surface wave fields, Part I: Measured attenuation and theoretical amplitude-distance laws N2 - The attenuation of the amplitudes with distance of technically induced surface wave fields is analyzed in theory and experiments. Experimental results of technically induced ground vibration are presented and collected from literature, which show a power-low attenuation A ~ r–q of amplitudes A with distance r and exponents q > 0.5 higher than for elastic surface waves. Additional attenuation effects are analyzed theoretically. The most important effect is due to the material or scattering damping. Each frequency component is attenuated exponentially as A ~ exp(–kr), but for a broadband excitation, the sum of the exponential laws yields a power law with a higher exponent. Some more effects are discussed, for example the dispersion of the Rayleigh wave due to the layering of the soil, which yields a stronger attenuation A ~ r–q–dq, including an additional exponent of dq = 0.5 in case of an impulsive loading. PY - 2010 DO - https://doi.org/10.1785/0120090228 SN - 0037-1106 SN - 1943-3573 VL - 100 IS - 4 SP - 1528 EP - 1539 PB - Seismological Society of America CY - El Cerito, Calif. AN - OPUS4-22405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Technically induced surface wave fields, Part II: Measured and calculated admittance spectra N2 - Transfer admittance spectra of technically induced surface wave fields are analyzed in theory and experiments. Theoretical admittance spectra of layered soils are obtained by integration in wavenumber domain and compared with experimental admittances due to hammer or vibrator excitation. The admittance spectra are strongly influenced by the layering and damping of the soil. Deep stiff-soil layers yield a low-frequency cutoff, whereas a strong damping yields a high-frequency cutoff. A sharp cutoff in a narrow frequency band, which is measured at some sites, can be explained by a damping that increases with frequency, such as viscous material or scattering damping. PY - 2010 DO - https://doi.org/10.1785/0120090229 SN - 0037-1106 SN - 1943-3573 VL - 100 IS - 4 SP - 1540 EP - 1550 PB - Seismological Society of America CY - El Cerito, Calif. AN - OPUS4-22406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Dynamic interaction of various beams with the underlying soil - finite and infinite, half-space and Winkler models KW - Beam dynamics KW - Beam-soil interaction KW - Bending waves KW - Rayleigh wave KW - Railway track vibration KW - Elastic length KW - Wavenumber integrals PY - 2008 DO - https://doi.org/10.1016/j.euromechsol.2008.02.001 SN - 0997-7538 SN - 1873-7285 VL - 27 IS - 5 SP - 933 EP - 958 PB - Elsevier CY - Paris AN - OPUS4-17867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Auersch, Lutz T1 - Static and dynamic soil-structure interaction of finite and infinite beams and plates, tracks and piles T2 - 7th European Conference on Structural Dynamics, EURODYN 2008 CY - Southampton, UK DA - 2008-07-07 KW - Soil-structure interaction KW - Wave-number integrals KW - Finite-element boundary-element method KW - Moving loads on tracks KW - Pile-soil interaction PY - 2008 SN - 9780854328826 IS - E 102 SP - 1 EP - 12 AN - OPUS4-18236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rücker, Werner A1 - Auersch, Lutz ED - Schulte-Werning, B. T1 - A user-friendly prediction tool for railway induced ground vibrations: Emission - transmission - immission T2 - 9th International Workshop on Railway Noise CY - Munich, Germany DA - 2007-09-04 PY - 2008 SN - 3-540-74892-X N1 - Serientitel: Notes on numerical fluid mechanics and multidisciplinary design – Series title: Notes on numerical fluid mechanics and multidisciplinary design IS - 99 SP - 129 EP - 135 PB - Springer CY - Berlin AN - OPUS4-18326 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -