TY - JOUR A1 - Auersch, Lutz T1 - Prediction of ground vibrations from rail tunnels –finite-element, boundary-element and wavenumber calculations N2 - The prediction of ground and building vibrations has been established for surface lines and has now been extended to tunnel lines. The wave propagation in homogeneous or layered soils (the transmission) is calculated by an integration in wavenumber domain. The wave amplitudes at different distances and for different frequencies will be analysed for the following situations. 1. The horizontal propagation from a surface point to a surface point constitutes the basic rules. 2. The horizontal propagation from a source point at depth to a receiver point at depth which is related to a building with a deep basement or on a pile foundation. 3. The propagation from depth to the surface, which is the normal case for free-field measurements, has some different characteristics, for example a weaker attenuation with the horizontal distance from the source, which can be approximated by the full-space solution and the reflection rules for incident waves. The emission from a tunnel structure has been calculated by a finite-element model of the tunnel combined with a boundary-element model of the soil giving the reduction compared to a point-load excitation. The immission has been analysed by finite-element models of tunnel-soil-building systems for examples of research and consultancy work. Measurement results from a high-speed and a metro line confirm some of the established rules. KW - Railway tunnel KW - Ground vibration KW - Building vibration KW - Wavenumber integral KW - Full-space solution KW - Reflection at the surface PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-627015 DO - https://doi.org/10.1088/1742-6596/2909/1/012013 SN - 1742-6596 VL - 2909 SP - 1 EP - 12 PB - IOP Publishing CY - London AN - OPUS4-62701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Modal analysis of road and rail bridges for damage detection and resonance prediction N2 - In the 1980s, the Federal Institute of Material Research and Testing started with modal analysis measurements of some bridges before and after repair. For one of the bridges, a structural health monitoring was installed 1994 which is still working up to now. It has been modified and extended several times. The monitoring was extended from the critical span to three neighbouring spans. A modal analysis of the whole bridge with seven spans have been done three times, twice together with EMPA of Switzerland. Additional calibration measurements have been done and additional evaluation procedures have been implemented for the monitoring of the steadily increasing loads from the road traffic. Additional sensors were installed such as strain gauges, crack-width, and temperature sensors. The strong influence of the temperature on the natural frequencies has been studied over the years. Later, a temperature compensation has been established and a weak aging trend has been found in the monitoring data. Now, the bridge will be demolished and replaced by a new bridge. Some results of this long-term monitoring will be shown and possible damages (changes of the pre-stress or the support structure) will be discussed. A second application of modal analysis will be demonstrated: the prediction of the resonances due to passing trains. The response of a bridge to passing trains can be calculated in frequency domain as the multiplication of three spectra, the axle sequence spectrum of the train, the transfer function of the bridge, and the modal force spectrum of a single passing load. A resonance occurs if a maximum of the train spectrum coincides with the maximum of the bridge spectrum. The amplitude at this resonance is strongly influenced by the modal force spectrum which is identical to the frequency or wavenumber spectrum of the corresponding mode shape. Therefore, modal analysis from calculation, impact measurements, wind and train measurements are necessary for the prediction of the resonance occurrence and amplification. Examples of mode shape spectra for single or multi-span bridges with simply supported or continuous spans will be shown, and some relations between mode shapes and resonance amplifications will be concluded. T2 - 11th International Operational Modal Analysis Conference (IOMAC) CY - Rennes, France DA - 20.05.2025 KW - Bridge monitoring KW - Multi-span bridges KW - Damage detection KW - Resonance PY - 2025 AN - OPUS4-63472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rogge, Andreas A1 - Auersch, Lutz T1 - Innovation in track components: heavy sleepers on soft under-sleeper pads N2 - The maintenance of the transport infrastructures and their further development are going to remain focal points for investment and research in Germany in future. According to the latest development forecasts made by both the federal government and Deutsche Bahn, even if rail´s percentage share of the market were to remain unchanged, growth of around 50% would be expected in the next ten years, especially in freight traffic. This growth is necessitating considerable development both in the technical design of the tracks and in the abatement of the noise and vibration caused by railway traffic. PY - 2015 SN - 0013-2845 VL - 2 SP - 9 EP - 13 PB - DVV Media Group, Eurailpress CY - Hamburg AN - OPUS4-34993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir T1 - System and damage identification for cars, floors and roofs, bridges, tracks and foundations by modal analyses, frequency response functions and moving-load responses N2 - The following objects have been analysed by frequency response functions and moving load responses. A simple modal analysis which is based on the transformed and weighted system equations has been tested for an automotive test car and for many floors in many buildings to get some rules for their natural frequency and damping. Moreover, six neighboured equal, weakly coupled, wooden floors in a castle have been measured by ambient and hammer excitation, and a special method to extract the different mode shapes of the closely spaced natural frequencies has been developed and tested. Different foundations, for which the soil-structure interaction is generally important, have been measured and compared with finite-element boundary-element models of varying soil properties. Similarly by FEBEM calculations, damages in railway tracks have been identified from flexibility functions (frequency response functions) and from the moving-load responses to normal train operation. Rail and foot bridges have been measured during train passages and by quasi-static tests with moving vehicles. The repeatability of the inclinometer measurements has been checked for different passages, passage directions, and measurement campaigns at a six-span foot bridge. Two rail bridges at the Hanover-Würzburg high-speed line have been measured and evaluated for integrity and for the train- and speed-dependent bridge resonances. The relation between the multi-axle and the single-axle excitation can be solved in frequency domain by the axle-sequence spectrum of the vehicle or the whole train. The single axle response has been used to identify track and bridge damages in laboratory and in situ. T2 - 10th International Operational Modal Analysis Conference (IOMAC 2024) CY - Naples, Italy DA - 21.05.2024 KW - Weakly coupled floors KW - Bridge passage KW - Track damage KW - Foundation-soil interaction KW - Flexibility function KW - Moving load response PY - 2024 SN - 978-3-031-61420-0 DO - https://doi.org/10.1007/978-3-031-61421-7_19 SN - 2366-2557 SP - 187 EP - 195 PB - Springer Nature Switzerland AG CY - Cham, Schweiz AN - OPUS4-61248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - The excitation, propagation, and mitigation of train-induced ground vibrations from the axle impulses on the track N2 - Train-induced vibrations in soft ground usually have a strong low-frequency component. This component has a characteristic spectrum which is related to the axle sequence and the speed of the train. Its attenuation with distance is weaker than the attenuation for higher frequencies, and it always dominates the far-field ground vibration. Narrow-band frequency analyses clearly show that this ground vibration component is due to the static axle loads. Axle box vibrations have a different characteristic where the first out-of-roundness of the wheels is the only remarkable low-frequency component. Therefore, the dynamic axle loads from wheel and track irregularities are not the reason for the strong ground vibration component. The moving static axle loads generate the quasi-static response of the soil at very low frequencies and at very near distances. A part of the original impulse spectrum is scattered when it propagates through an inhomogeneous ballast and soil with a randomly varying stiffness. The axle impulses are smoother for a higher bending stiffness or a lower support stiffness (under sleeper pads, under ballast mats) of the track. This mitigation of the ground vibration will be demonstrated by measurements at three sites in Switzerland as well as the characteristic of the soil and axle-box vibrations. T2 - Railways Conference CY - Prague, Czech Republic DA - 02.09.2024 KW - Soil and vehicle measurements KW - Train passages KW - Ground vibration KW - Excitation mechanisms KW - Mitigation KW - Under sleeper pads KW - Under ballast mat PY - 2024 AN - OPUS4-61226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Song, Jiaojiao T1 - Analysis of intact and damaged (floating) slab tracks by finite-element boundary-element models and by measurements N2 - The damage detection and repair control have become important tasks for slab tracks. Different intact and damaged slab tracks have been investigated theoretically and experimentally for train passages and hammer impacts. The following damages have been considered: The loss of contact between the sleeper and the track slab, between the track slab and the base slab, and between the base slab and the base layer. At first, a slab track with a gap between the track slab and the base layer has been calculated by the combined finite-element boundary-element method which correctly incorporates the behaviour of the infinite soil. The basic results are the track displacements of the rail, the track slab, and the base layer along the track which are caused by a single axle load. These solutions are properly superposed for to get the complete train load. The influence of track and soil parameters and of the track damage has been analysed. For the intact track, the compliance of the soil is dominant whereas the track bending stiffness becomes more important for the damaged track. By comparing the calculated results with the measurements, the length of the gap could be quantified. A slab track with a loose sleeper (without contact to the supporting track slab) was analysed by the transfer function between the displacements and the hammer force (receptance functions) where a resonance appeared in case of the damage. Differences between the different track elements confirmed the detection of the damage. A floating slab track with a thin rubber layer has been investigated for a possible gap between the base slab and the base layer. The behaviour of the intact track has been calculated by a wavenumber-domain method, and the same behaviour has been found in the measurements at several track sections, indicating that there is no damage. Finally, a floating slab track with steel springs and viscous fluid dampers has been measured in the Tongji laboratory. The modes of the floating track slab and the transfer function with corresponding resonances have been calculated and successfully compared with results from wheelset drop tests. T2 - 3rd International Conference of Rail Transportation CY - Shanghai, China DA - 07.08.2024 KW - Slab tracks KW - Damage KW - Vibration measurements KW - Finite-element boundary-element method PY - 2024 AN - OPUS4-61227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Vibrations of multi-span structures like floors, rail and road bridges N2 - Resonances of rail bridges due to the passage of trains have been mainly investigated for sin-gle-span bridges. When multi-span bridges are to be considered, it is of interest if stronger resonance amplifications must be taken into account. Measurements of several multi-span structures have been evaluated for natural frequencies and mode shapes. An integral rail bridge with three different spans shows a separated local resonance of the longest main span and clearly higher natural frequencies of the shorter side spans. A two-span continuous beam on the test area of the Federal Institute of Material Research and Testing showed a regular pattern of natural frequencies where always a pair of frequencies is found with a certain fre-quency ratio. The corresponding mode shapes are the out-of-phase and in-phase combinations of the first, second, third … bending mode. A seven-span road bridge has been monitored for one of the almost equally long spans. Similar mode shapes have been observed for different, clearly separated natural frequencies. Three modal analyses measurement campaigns have been performed on the whole bridge. The combined mode shapes of the seven spans have been clearly identified where different combinations of spans are dominating in the different mode shapes. Equal weakly coupled spans have been analysed for a large wooden floor in a castle. A cluster of natural frequencies has been observed and a special method to extract the mode shapes has been developed and tested. The consequences of multi-span bridges for rail traffic will be discussed. If n simply supported bridge spans have no coupling, n equal modes with amplitude A/n exist and their superposition would yield the same resonance as for a single bridge. Real simply supported bridges have always a weak coupling due to the track or the common piers. Therefore, the natural frequencies differ a little and they cannot be in reso-nance at the same time for the same train passage so that the resonance amplification cannot be as strong as for the single bridge. This rule holds also for the average amplitude of the time history of the bridge passage which is an adequate quantity to judge for the bridge behaviour. The maximum amplitude of the time histories of different bridge points are quite random and could exceed the values of a single bridge. The meaning of such criteria is questioned and fre-quency domain analyses are suggested for a clearer bridge analysis and understanding. T2 - DinEst 2024 Third Conference on Structural Dynamics CY - Seville, Spain DA - 12.09.2024 KW - Rail bridge PY - 2024 SP - 41 EP - 59 PB - Escuela Tecnica Superior de Ingenieria CY - Sevilla AN - OPUS4-61238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Prediction of ground vibrations from rail tunnels –finite-element, boundary-element and wavenumber calculations N2 - The prediction of ground and building vibrations has been established for surface lines and has now been extended to tunnel lines. The wave propagation in homogeneous or layered soils (the transmission) is calculated by an integration in wavenumber domain. The wave amplitudes at different distances and for different frequencies will be analysed for the following situations. 1. The horizontal propagation from a surface point to a surface point constitutes the basic rules. 2. The horizontal propagation from a source point at depth to a receiver point at depth which is related to a building with a deep basement or on a pile foundation. 3. The propagation from depth to the surface, which is the normal case for free-field measurements, has some different characteristics, for example a weaker attenuation with the horizontal distance from the source, which can be approximated by the full-space solution and the reflection rules for incident waves. The emission from a tunnel structure has been calculated by a finite-element model of the tunnel combined with a boundary-element model of the soil giving the reduction compared to a point-load excitation. The immission has been analysed by finite-element models of tunnel-soil-building systems for examples of research and consultancy work. Measurement results from a high-speed and a metro line confirm some of the established rules. Figure T2 - Int. Conf. RASD, Recent Advance in Structural Dynamics CY - Southampton, GB DA - 01.07.2024 KW - Ground vibration KW - Tunnel line KW - Wave propagation KW - Wavenumber method KW - Building vibration KW - Thin layer method PY - 2024 SP - 1 EP - 12 CY - Southampton AN - OPUS4-61266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Conreaux, Laurence A1 - Said, Samir A1 - Müller, Roger T1 - The excitation, propagation, and mitigation of train-induced ground vibrations from the axle impulses on the track N2 - Train-induced vibrations in soft ground usually have a strong low-frequency component. This component has a characteristic spectrum which is related to the axle sequence and the speed of the train. Its attenuation with distance is weaker than the attenuation for higher frequencies, and it always dominates the far-field ground vibration. Narrow-band frequency analyses clearly show that this ground vibration component is due to the static axle loads. Axle box vibrations have a different characteristic where the first out-of-roundness of the wheels is the only remarkable low-frequency component. Therefore, the dynamic axle loads from wheel and track irregularities are not the reason for the strong ground vibration component. The moving static axle loads generate the quasi-static response of the soil at very low frequencies and at very near distances. A part of the original impulse spectrum is scattered when it propagates through an inhomogeneous ballast and soil with a randomly varying stiffness. The axle impulses are smoother for a higher bending stiffness or a lower support stiffness (under sleeper pads, under ballast mats) of the track. This mitigation of the ground vibration will be demonstrated by measurements at three sites in Switzerland as well as the characteristic of the soil and axle-box vibrations. T2 - Sixth International Conference on Railway Technology: Research, Development and Maintenance CY - Prague, Czech Republic DA - 01.09.2024 KW - Soil and vehicle measurements KW - Train passages KW - Ground vibration KW - Excitation mechanisms KW - Mitigation KW - Under sleeper pads KW - Under ballast mat PY - 2024 DO - https://doi.org/10.4203/ccc.7.13.2 SN - 2753-3239 VL - 7 SP - 1 EP - 13 PB - Civil-Comp Press CY - Edinburgh, United Kingdom AN - OPUS4-61240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - System and damage identification for cars, floors and roofs, bridges, tracks and foundations by modal analyses, frequency response functions and moving load responses N2 - The following objects have been analysed by frequency response functions and moving load responses. A simple modal analysis which is based on the transformed and weighted system equations has been tested for an automotive test car and for many floors in many buildings to get some rules for their natural frequency and damping. Moreover, six neighboured equal, weakly coupled, wooden floors in a castle have been measured by ambient and hammer excitation, and a special method to extract the different mode shapes of the closely spaced natural frequencies has been developed and tested. Different foundations, for which the soil-structure interaction is generally important, have been measured and compared with finite-element boundary-element models of varying soil properties. Similarly by FEBEM calculations, damages in railway tracks have been identified from flexibility functions (frequency response functions) and from the moving-load responses to normal train operation. Rail and foot bridges have been measured during train passages and by quasi-static tests with moving vehicles. The repeatability of the inclinometer measurements has been checked for different passages, passage directions, and measurement campaigns at a six-span foot bridge. Two rail bridges at the Hanover-Würzburg high-speed line have been measured and evaluated for integrity and for the train- and speed-dependent bridge resonances. The relation between the multi-axle and the single-axle excitation can be solved in frequency domain by the axle-sequence spectrum of the vehicle or the whole train. The single axle response has been used to identify track and bridge damages in laboratory and in situ. T2 - 10th International Operational Modal Analysis Conference (IOMAC 2024) CY - Naples, Italy DA - 21.05.2024 KW - Weakly coupled floors KW - Bridge passage KW - Track damage KW - Foundation-soil interaction KW - Flexibility function KW - Moving load response PY - 2024 AN - OPUS4-61233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Railway vibration fast physics based models for the prediction of ground vibration and the identification of track damage N2 - The following applications of machine learning will be discussed: 1. The prediction of the wave propagation from a railway line (completely physics based for surface lines, physics-based machine learning for tunnel lines) 2. The track behaviour for the emission of train-induced ground vibration (physics based for homogeneous soil, machine learning for layered soil) 3. Track damage detection and quantification from frequency response functions and moving load responses 4. Bridge damage detection and localisation from modal analysis and moving load 5. The use of axle-box acceleration for the identification of track/sub-soil condition and bridge resonances. The prediction of railway vibration usually needs time-consuming finite element, boundary element and wavenumber domain calculations. For a user-friendly prediction software however, fast calculations are needed. Several time-consuming detailed calculations have been used to develop simpler and fast models for the surface railway lines. The more challenging prediction from tunnel lines will be attacked by purely mathematical and by physics-informed machine learning. The dynamic stiffnesses of isolated or un-isolated railway tracks from detailed calculations with a continuous soil have been approximated with the simpler Winkler soil. The vehicle-track resonance (P2 resonance) rules the effect of the mitigation measures, and it can also be used for the on-board monitoring of the track and sub-soil condition. For the identification of track damage such as gaps between sleepers, track slabs and layers, detailed models with a continuous soil have been updated to get the best fit to the measured frequency response functions from hammer tests and the deformation pattern from the moving load response. Whereas the track damage can be locally identified, this is more difficult for bridges where the modal analysis gives mainly global information. The influence lines of the inclination for statically passing vehicles (locomotive, truck, compaction roller) have been used to localise bridge damage (stiffness variations). The on-board monitoring of rail bridges needs special conditions (regular trains with special speeds) to excite and measure the bridge resonance. T2 - 11th European Workshop on Structural Health Monitoring (EWSHM) CY - Potsdam, Germany DA - 10.06.2024 KW - Vibration prediction KW - Track damage detection KW - Human and machine learning KW - Wave propagation KW - Surface line KW - Tunnel KW - Bridge resonance PY - 2024 AN - OPUS4-61231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Reduction of ground induced building vibrations by kinematic and inertial soil structure interaction and by base isolation N2 - Many buildings on the soil have been measured and the transfer function freefield-to-building is ana-lysed. In general, an amplification at low frequencies, an amplification for the floor resonances, and a reduction for higher frequencies can be observed. Most of the measurement examples show a flexible behaviour along the height of the buildings. The prediction of building vibration consists typically of three steps. At first, the dynamic stiffness of the foundation and secondly the kinematic soil-structure interaction has to be calculated for example by the combined finite-element boundary-element meth-od. The stiffness of the foundation reduces the incoming waves (the kinematic interaction). Finally, the inertial interaction of the building with the foundation soil is calculated by the conventional finite ele-ment method where the dynamic foundation stiffness from the first step is added at the bottom of the building. The building on the compliant soil has a fundamental vertical resonance usually below 10 Hz. A parametrical variation clearly shows the influence of the elasticity of the building on this reso-nance frequency and amplitude. Moreover for column-type office buildings, the low-frequency floor resonances can further reduce this fundamental frequency. A 1-dimensional model has been estab-lished which can well approximate the behaviour of the 3-dimensional building models. It is used to demonstrate the effect of a base isolation with soft elements at the foundation. A rigid building model clearly over-estimates the isolation effect, which is smaller for a model with flexible walls, columns and floors. An even simpler model of an infinitely high building is suggested for the mitigation effect, and the resonance frequency of the rigid building should be replaced by a better performance indica-tor, which is based on the impedance ratio of the isolation and the wall and which can be also ex-pressed as a characteristic frequency. T2 - 30th International Congress on Sound and Vibration CY - Amsterdam, Netherlands DA - 08.07.2024 KW - Building vibrations KW - Base isolation KW - Foundation stiffness KW - Kinematic soil-structure interaction KW - Transfer functions of flexible buildings PY - 2024 AN - OPUS4-61229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Vehicle Dynamics and Train‑Induced Ground Vibration—Theoretical Analyses and Simultaneous Vehicle, Track, and Soil Measurements N2 - Ground vibrations near railway lines are generated by the forces that are acting between wheel and rail. It seems to be a straight forward assumption that the vehicle dynamics are important for the level and the frequencies of the excitation forces. Different vehicle dynamics phenomena are analysed for their role in the excitation of ground vibrations: rigid body modes of the bogies, elastic (bending) modes of the car body, and elastic modes of the wheelset. The theoretical analyses use rigid body models, simplified elastic models, and detailed elastic models. Some of these problems are vehicle–track interaction problems where 3D finite‑element boundary‑element models have been used for the track and soil. It is shown that the rigid or flexible vehicle modes are well in the frequency range of ground vibrations (4 to 100 Hz). They have an influence on the excitation force but the additional forces are rather small and can be neglected in ground vibration prediction. The theoretical results are checked by experimental results of a simultaneous measurement of vehicle, track, and ground vibrations. KW - Rigid vehicle model KW - Flexible car body KW - Flexible wheelset KW - Dynamic loads KW - Ground vibration PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569796 DO - https://doi.org/10.3390/vehicles5010013 VL - 5 IS - 1 SP - 223 EP - 247 PB - MDPI CY - Basel AN - OPUS4-56979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Some resonance effects of non-typical trains and railway bridges investigated by a frequency-domain method N2 - The resonances of railway bridges have often been analysed for short bridges under periodical high-speed trains, for simply supported one-span bridges, for the fundamental bridge mode, and by time-domain analyses. Many time-consuming calculations have been performed to establish simplified rules for standards. In this contribution, the passage of different (existing, new and hypothetic) trains over different bridges will be analysed in frequency domain by using three separated spectra with the purpose to get a better physical insight in the phenomena. At first, the excitation spectrum of the modal forces is built by the mode shape and the passage time of the train over the bridge. The second spectrum is the frequency response function of the bridge which include the modal frequency, damping and mass. The third part is the spectrum of the axle sequence of an arbitrary train which is not limited to periodical or specific (conventional, articulated, regular or standard) trains and which does not include any bridge parameters. The final solution in frequency domain is obtained as the product of these three complex, strongly varying spectra for the dominating bridge mode or in general as the sum of these products over all relevant bridge modes. The time domain solution is obtained via the inverse Fourier transform, and the resulting time histories have been successfully compared with some measurement results. The method is applied to the vertical and torsional modes of a mid-long 1-span bridge on elastomeric bearings under standard train speeds, and to a long multi-span integral bridge under long periodical freight trains. Different resonance and cancellation effects have been found for systematically varied train speeds according to the axle sequence of the whole train which is dominated by the two locomotives in that case. To be more specific, the first torsional mode of the mid-span bridge is excited for a train speed of 100 km/h whereas the second bending mode is excited for a train speed of 160 km/h. In both cases, the other mode is suppressed by the minima of the axle-distance spectra. In addition, the case of the German high-speed train ICE4 and the very high-speed hyperloop case will be discussed briefly. In general, it is shown that resonance effects are also worth to be studied for freight and passenger trains with lower speeds. T2 - EURODYN 2023 XII International Conference on Structural Dynamics CY - Delft, Netherlands DA - 03.07.2023 KW - Railway bridge KW - Transfer fuction KW - Modal load spectrum KW - Axle-sequence spectrum KW - Freight train KW - Passenger train KW - High-speed train KW - 2-span bridge PY - 2023 AN - OPUS4-57955 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Soil-foundation-structure problems related to train induced vibrations - the kinematic interaction of tunnel excited pile foundations and the inertial interaction of high rise buildings N2 - The soil-foundation-structure interaction is always important when building vibrations due to train passages have to be considered. The frequency range for train vibrations is up to 100 Hz. Normally, soft surface soils are crucial so that the wavelength can be much smaller than the foundation dimensions. Three topics are of interest for the prediction and the under-standing of building vibrations. 1. The „kinematic interaction“ or the „added foundation ef-fect“, which is calculated either by the combined boundary-element finite-element method or by the wavenumber domain method, results in a reduction of the free-field vibration. The stiff-ness of the foundation resists the wave deformation, plates and walls for horizontally propa-gating waves or piles for vertically incident waves. 2. The „inertial interaction“ or the „added building effect“ yields an amplification around the vertical building resonance, which may be a rigid mode on the compliant soil or a flexible mode for high-rise buildings, and a reduction at higher frequencies. This has been analysed by detailed finite element models of apartment and office buildings. 3. Base isolation is a method to further reduce building vibrations. It is important to know the soil-foundation impedance for the possible reduction, as well as the correct building impedance. A high-rise building cannot be considered as a rigid mass model. It has a frequency-dependent behaviour with longitudinal waves travelling from the founda-tion to the top of the building which include the effect of floor vibrations. Experiences from building projects in Vienna, Frankfort and Berlin will give some additional results for the ex-citation from tunnel lines, the kinematic response of pile foundations, and the inertial re-sponse of the flexible multi-storey buildings. T2 - Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2023) CY - Athens, Greece DA - 12.06.2023 KW - Soil-pile interaction KW - Pile groups KW - Kinematic interaction KW - Inertial interaction KW - High-rise buildings KW - Base isolation PY - 2023 AN - OPUS4-57954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Damage detection by flexibility functions and quasi-static moving load tests N2 - The contribution shows measurement examples of cars, floors, foundations, railway tracks, a footbridge, and a railbridge. Vibrations may include modes and waves. Namely in soil-structure interaction, modes are damped, shifted and prevented so that alternatives for the modal analysis are necessary: The approximation of the whole spectrum (flexibility function) and of the whole train passage (moving-load response). T2 - Symposium Emerging Trends in Bridge Damage Detection, Localization and Quantification CY - Luxembourg, Luxembourg DA - 05.05.2023 KW - Flexibility KW - Movin load test KW - Frequency response function KW - Cars KW - Floors KW - Foundations KW - Railway tracks KW - Footbridge KW - Railbridge KW - Damage detection PY - 2023 AN - OPUS4-57951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Train-induced ground vibrations – The emission and transmission from tunnel and surface lines N2 - Train-induced ground vibrations are quite different for tunnel and surface lines. The excitation of the track and ground vibration by the vehicle-track-soil interaction maybe influenced by the stiffer track support of the tunnel invert. The excited waves are propagating on a different path compared to the surface line. The wave propagation in the interior of the soil is calculated by a wavenumber integral in a similar way as the propagation along the surface and a general reduction of < 0.5 has been found. An additional reduction has been found because of the missing Rayleigh wave. The different excitation of tunnel lines is analysed theoretically by the combined finite-element boundary-element method and some results about the influencing tunnel and soil parameters will be shown. Measurements have been made at the Mühlberg-Tunnel in Germany. The vibrations of the train, the track and the soil have been measured simultaneously at the tunnel and a nearby surface line. Spectra will be shown for different train speeds between 60 and 160 km/h. A clear reduction effect for the tunnel line compared to the surface line has been observed in a specific (train-speed-dependent) frequency range. This agrees well with the observations of other research institutes. The mid-frequency tunnel-surface reduction seems to be a consequence of the stiffer track structure which leads to a wider distribution of the axle loads. Therefore, the axle impulses due to the train passage are longer and have a lower frequency content. This will have an effect on the ground vibrations at some distance which are present in case of an irregular transmission path through a ballast and soil with varying stiffness. A similar reduction effect can also be found for other track forms where the axle impulses are distributed on a longer track segment, for example slab tracks, tracks with under ballast plates, under ballast mats or under sleeper pads. T2 - 29th International Congress on Sound and Vibration (ICSV29) CY - Prague, Czech Republic DA - 09.07.2023 KW - Ground vibration KW - Railway tunnel KW - Layered soil KW - Surface-tunnel reduction KW - Measurements PY - 2023 AN - OPUS4-57956 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Soil-foundation-structure problems related to train induced vibrations - the kinematic interaction of tunnel excited pile foundations and the inertial interaction of high rise buildings N2 - The soil-foundation-structure interaction is always important when building vibrations due to train passages have to be considered. The frequency range for train vibrations is up to 100 Hz. Normally, soft surface soils are crucial so that the wavelength can be much smaller than the foundation dimensions. Three topics are of interest for the prediction and the under-standing of building vibrations. 1. The „kinematic interaction“ or the „added foundation ef-fect“, which is calculated either by the combined boundary-element finite-element method or by the wavenumber domain method, results in a reduction of the free-field vibration. The stiff-ness of the foundation resists the wave deformation, plates and walls for horizontally propa-gating waves or piles for vertically incident waves. 2. The „inertial interaction“ or the „added building effect“ yields an amplification around the vertical building resonance, which may be a rigid mode on the compliant soil or a flexible mode for high-rise buildings, and a reduction at higher frequencies. This has been analysed by detailed finite element models of apartment and office buildings. 3. Base isolation is a method to further reduce building vibrations. It is important to know the soil-foundation impedance for the possible reduction, as well as the correct building impedance. A high-rise building cannot be considered as a rigid mass model. It has a frequency-dependent behaviour with longitudinal waves travelling from the founda-tion to the top of the building which include the effect of floor vibrations. Experiences from building projects in Vienna, Frankfort and Berlin will give some additional results for the ex-citation from tunnel lines, the kinematic response of pile foundations, and the inertial re-sponse of the flexible multi-storey buildings. T2 - COMPDYN 2023 CY - Athen, Greece DA - 12.06.2023 KW - Kinematic Interaction KW - Inertial Interaction KW - Surface Foundation KW - Pile Foundation KW - High-Rise Building PY - 2023 SP - 1 EP - 14 PB - NTUA CY - Athens AN - OPUS4-57959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Some resonance effects of non-typical trains and railway bridges investigated by a frequency-domain method N2 - The resonances of railway bridges have often been analysed for short bridges under periodical high-speed trains, for simply supported one-span bridges, for the fundamental bridge mode, and by time-domain analyses. Many time-consuming calculations have been performed to establish simplified rules for standards. In this contribution, the passage of different (existing, new and hypothetic) trains over different bridges will be analysed in frequency domain by using three separated spectra with the purpose to get a better physical insight in the phenomena. At first, the excitation spectrum of the modal forces is built by the mode shape and the passage time of the train over the bridge. The second spectrum is the frequency response function of the bridge which include the modal frequency, damping and mass. The third part is the spectrum of the axle sequence of an arbitrary train which is not limited to periodical or specific (conventional, articulated, regular or standard) trains and which does not include any bridge parameters. The final solution in frequency domain is obtained as the product of these three complex, strongly varying spectra for the dominating bridge mode or in general as the sum of these products over all relevant bridge modes. The time domain solution is obtained via the inverse Fourier transform, and the resulting time histories have been successfully compared with some measurement results. The method is applied to the vertical and torsional modes of a mid-long 1-span bridge on elastomeric bearings under standard train speeds, and to a long multi-span integral bridge under long periodical freight trains. Different resonance and cancellation effects have been found for systematically varied train speeds according to the axle sequence of the whole train which is dominated by the two locomotives in that case. To be more specific, the first torsional mode of the mid-span bridge is excited for a train speed of 100 km/h whereas the second bending mode is excited for a train speed of 160 km/h. In both cases, the other mode is suppressed by the minima of the axle-distance spectra. In addition, the case of the German high-speed train ICE4 and the very high-speed hyperloop case will be discussed briefly. In general, it is shown that resonance effects are also worth to be studied for freight and passenger trains with lower speeds. T2 - XII International Conference on Structural Dynamics CY - Delft, The Netherlands DA - 03.07.2023 KW - Railway bridge KW - Transfer function KW - Modal force spectrum KW - Axle-sequence spectrum KW - Freight train KW - Passenger train KW - High-speed train KW - 2-span bridge KW - Long-span bridge PY - 2023 SP - 1 EP - 10 PB - TU Delft CY - Delft AN - OPUS4-57961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Train-induced ground vibrations - the emission and transmission from tunnel and surface lines N2 - Train-induced ground vibrations are quite different for tunnel and surface lines. The excitation of the track and ground vibration by the vehicle-track-soil interaction maybe influenced by the stiffer track support of the tunnel invert. The excited waves are propagating on a different path compared to the surface line. The wave propagation in the interior of the soil is calculated by a wavenumber integral in a similar way as the propagation along the surface and a general reduction of < 0.5 has been found. An additional reduction has been found because of the missing Rayleigh wave. The different excitation of tunnel lines is analysed theoretically by the combined finite-element boundary-element method and some results about the influencing tunnel and soil parameters will be shown. Measurements have been made at the Mühlberg-Tunnel in Germany. The vibrations of the train, the track and the soil have been measured simultaneously at the tunnel and a nearby surface line. Spectra will be shown for different train speeds between 60 and 160 km/h. A clear reduction effect for the tunnel line compared to the surface line has been observed in a specific (train-speed-dependent) frequency range. This agrees well with the observations of other research institutes. The mid-frequency tunnel-surface reduction seems to be a consequence of the stiffer track structure which leads to a wider distribution of the axle loads. Therefore, the axle impulses due to the train passage are longer and have a lower frequency content. This will have an effect on the ground vibrations at some distance which are present in case of an irregular transmission path through a ballast and soil with varying stiffness. A similar reduction effect can also be found for other track forms where the axle impulses are distributed on a longer track segment, for example slab tracks, tracks with under ballast plates, under ballast mats or under sleeper pads. T2 - 29th International Congress on Sound and Vibration CY - Prague, Czech Republic DA - 09.07.2023 KW - Ground vibration KW - Railway tunnel KW - Layered soil KW - Surface-tunnel reduction KW - Measurements PY - 2023 SP - 1 EP - 8 PB - IIAV CY - Auburn, USA AN - OPUS4-57962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -