TY - CONF A1 - Auersch, Lutz T1 - Zur Berechnung der Erschütterungsminderung von Eisenbahngleisen mit ein- und zweidimensionalen Modellen N2 - Eindimensionale Modelle des Gleises aus einem Schienenstützpunkt, zweidimensionale Modelle enthalten die Kraftverteilung der Schiene. Eindimensionale Modelle machen einen Fehler, weil sie eine zu große Fahrzeugmasse berücksichtigen. Man kann jedoch bei der Berechnung der Minderungswirkung von Gleiselementen eindimensionale Gleismodelle verwenden, um die Kraftübertragung des Gleises bzw. die Minderungswirkung des Gleises zu berechnen. Die Wechselwirkung mit dem Fahrzeug kann einfach mit der dynamischen Stützpunktsteifigkeit berechnet werden. Dabei muss die Stützpunktsteifigkeit mit einer charakteristischen Gleislänge multipliziert werden, die frequenz- und systemabhängig ist. T2 - Norm-Arbeitsausschuss Schwingungsminderung in der Umgebung von Verkehrswegen CY - Munich, Germany DA - 14.01.2020 KW - Richtige Fahrzeugmasse KW - Erschütterungsminderung KW - Elastische Gleiselemente KW - Rechenverfahren PY - 2020 AN - OPUS4-50268 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Das Prognosetool der BAM zur Emission, Transmission und Immission von Bahnerschütterungen N2 - Die gesamte Prognose wurde rechnerisch erfasst. Die Rechenverfahren sind einfach und schnell. Die Emission und die Immission verwendet Übertragungsmatrizen. Die Transmissionsrechnung beruht auf der Dispersion der Rayleighwelle. Die Verknüpfung erfolgt über die Anregungskraft auf den Boden und über die Freifeldamplitude am Gebäude. Es sind viele Eingabemöglichkeiten für Messdaten vorgesehen. Messungen können von einem Ort auf einen anderen Ort übertragen werden. T2 - 98. Sitzung des Normausschusses "Schwingungsminderung in der Umgebung von Verkehrswegen" CY - Online meeting DA - 07.05.2020 KW - Bahnerschütterungen KW - Prognose KW - Übertragungsmatrizen KW - Rayleighwellendispersion PY - 2020 AN - OPUS4-50748 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Dynamik von Stahlbetonbrücken - Messprojekte aus dem Eisenbahn- und Straßenverkehr T2 - 8. Symposium "Experimentelle Untersuchungen von Baukonstruktionen" CY - Dresden, Deutschland DA - 2015-09-24 PY - 2015 AN - OPUS4-34339 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Zur Prognose von Erschütterungen aus Bahntunneln N2 - Zur Erschütterungsausbreitung an oberirdischen Bahnlinien gibt es gute Übereinstimmungen zwischen Messungen und der Theorie geschichteter Böden. Bei der Interpretation der Ergebnisse spielt die Rayleigh-Welle eine große Rolle. Je nach Frequenz und Wellenlänge hat die Rayleigh-Welle eine bestimmte Eindringtiefe und erreicht damit mehr oder weniger steife Bodenschichten. Damit bekommt man eine frequenzabhängige Bodensteifigkeit für die Erschütterungsprognose. Für die Wellenausbreitung in der Tiefe statt an der Bodenoberfläche müssen eigene Gesetzmäßigkeiten gefunden werden. Es werden die Punktlastlösungen im Frequenz-Wellenzahlbereich und durch Integration über die Wellenzahlen berechnet. Man erhält die Wellenfelder, die Terzspektren für verschiedene Entfernungen und Frequenzen. Es wird die Tiefenlage und das Bodenmodell (homogen, geschichtet und kontinuierlich zunehmende Steifigkeit) variiert. Die Rayleigh-Welle verliert ihre Bedeutung und stattdessen kann die Vollraumlösung zur Interpretation und Prognose verwendet werden. Es werden die Halbraumlösung mit und ohne Rayleigh-Welle und die Vollraumlösung in der Tiefe diskutiert und verglichen. Neben der Wellenausbreitung (der Transmission) werden auch Effekte der Erschütterungsanregung (der Emission) und der Übertragung in Gebäude (der Immission) mit Hilfe der Finite-Element-Randelement-Methode berechnet. Die Verteilung der dynamischen Achslast durch die Tunnelsohle ergibt eine Minderung gegenüber der Punktlastanregung. Bei der Immission hat man keine Freifeldanregung wie an der Bodenoberfläche. Man muss entweder neben der Wellenamplitude (Verschiebung oder Schwinggeschwindigkeit) in der Tiefe auch die Spannung der ankommenden Welle berücksichtigen, oder man muss die Freifeldamplituden nach Bodenaushub berechnen. Die Rechenergebnisse deuten darauf hin, dass man als Freifeldanregung die zweifache Vollraumlösung ansetzen kann. T2 - Wiener Dynamik Tage 2021 CY - Vienna, Austria DA - 22.7.2021 KW - Erschütterungsausbreitung KW - Tunnel KW - Halbraum KW - Vollraum PY - 2021 SP - 1 EP - 11 PB - Steinhauser Consulting Engineers (STCE) CY - Wien AN - OPUS4-53253 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Zur Prognose von Erschütterungen aus Bahntunneln N2 - Zur Erschütterungsausbreitung an oberirdischen Bahnlinien gibt es gute Übereinstimmungen zwischen Messungen und der Theorie geschichteter Böden. Bei der Interpretation der Ergebnisse spielt die Rayleigh-Welle eine große Rolle. Je nach Frequenz und Wellenlänge hat die Rayleigh-Welle eine bestimmte Eindringtiefe und erreicht damit mehr oder weniger steife Bodenschichten. Damit bekommt man eine frequenzabhängige Bodensteifigkeit für die Erschütterungsprognose. Für die Wellenausbreitung in der Tiefe statt an der Bodenoberfläche müssen eigene Gesetzmäßigkeiten gefunden werden. Es werden die Punktlastlösungen im Frequenz-Wellenzahlbereich und durch Integration über die Wellenzahlen berechnet. Man erhält die Wellenfelder, die Terzspektren für verschiedene Entfernungen und Frequenzen. Es wird die Tiefenlage und das Bodenmodell (homogen, geschichtet und kontinuierlich zunehmende Steifigkeit) variiert. Die Rayleigh-Welle verliert ihre Bedeutung und stattdessen kann die Vollraumlösung zur Interpretation und Prognose verwendet werden. Es werden die Halbraumlösung mit und ohne Rayleigh-Welle und die Vollraumlösung in der Tiefe diskutiert und verglichen. Neben der Wellenausbreitung (der Transmission) werden auch Effekte der Erschütterungsanregung (der Emission) und der Übertragung in Gebäude (der Immission) mit Hilfe der Finite-Element-Randelement-Methode berechnet. Die Verteilung der dynamischen Achslast durch die Tunnelsohle ergibt eine Minderung gegenüber der Punktlastanregung. Bei der Immission hat man keine Freifeldanregung wie an der Bodenoberfläche. Man muss entweder neben der Wellenamplitude (Verschiebung oder Schwinggeschwindigkeit) in der Tiefe auch die Spannung der ankommenden Welle berücksichtigen, oder man muss die Freifeldamplituden nach Bodenaushub berechnen. Die Rechenergebnisse deuten darauf hin, dass man als Freifeldanregung die zweifache Vollraumlösung ansetzen kann. T2 - Wiener Dynamik Tage 2021 CY - Vienna, Austria DA - 22.07.2021 KW - Erschütterungsausbreitung KW - Tunnel KW - Halbraum KW - Vollraum PY - 2021 AN - OPUS4-53254 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Aspekte der Erschütterungsprognose bei Bahnlinien: Quasi-Statik und Achsfolge, unregelmäßiger Schotter und Boden, Wellenausbreitung bei Tunneln und Besonderheiten bei Bürogebäuden N2 - Erschütterungen, die durch Eisenbahnverkehr erzeugt werden, breiten sich durch den Erdboden aus und regen benachbarte Gebäude zu Schwingungen an. Es wurde ein Prognoseverfahren für Bahnerschütterungen ent-wickelt, das mit einfachen Modellen schnell Ergebnisse liefert. Dies sind physikalische Modelle, zum Beispiel 1-dimensionale Modelle mit Übertragungsmatrizen für die Fahrzeug-Fahrweg-Boden-Wechselwirkung und für die Gebäude-Boden Wechselwirkung. Damit werden die komplexen Verhältnisse bei der Emission (dem Zusammen¬wirken von Fahrzeug und Fahrweg), bei der Transmission durch den homogenen oder geschichteten Boden und bei der Immission in Gebäuden näherungsweise erfasst. In (Auersch, 2020) wird gezeigt, dass diese einfachen Prognosemodelle die Ergebnisse von detaillierten Modellen wie der Finite-Element-Randelement-Methode für das Gleis, die Wellenzahlintegrale für den Boden und 3-dimensionale Finite-Element-Modelle für das Gebäude gut wiedergeben können. Dies entspricht auch der Absicht, die Prognosemodelle aus den Ergebnissen der Detailmodelle abzuleiten. Die drei Prognoseteile werden getrennt berechnet, aber es werden physikalisch sinn¬volle Schnittstellen verwendet. Für die Emission und Transmission sind es die auf den Untergrund wirkenden Erregerkräfte von Fahrzeug und Fahrweg, für die Transmission und Immission sind es die Freifeldamplituden des Bodens. T2 - 17. D-A-CH Tagung Erdbebeningenieurwesen und Baudynamik CY - Online meeting DA - 16.09.2021 KW - Erschütterungen KW - Emission KW - Transmission KW - Immission PY - 2021 SP - 17 EP - 18 PB - ETH Zürich CY - Zürich AN - OPUS4-53313 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Aspekte der Erschütterungsprognose bei Bahnlinien: Quasi-Statik und Achsfolge, unregelmäßiger Schotter und Boden, Wellenausbreitung bei Tunneln und Besonderheiten bei Bürogebäuden N2 - Erschütterungen, die durch Eisenbahnverkehr erzeugt werden, breiten sich durch den Erdboden aus und regen benachbarte Gebäude zu Schwingungen an. Es wurde ein Prognoseverfahren für Bahnerschütterungen ent-wickelt, das mit einfachen Modellen schnell Ergebnisse liefert. Dies sind physikalische Modelle, zum Beispiel 1-dimensionale Modelle mit Übertragungsmatrizen für die Fahrzeug-Fahrweg-Boden-Wechselwirkung und für die Gebäude-Boden Wechselwirkung. Damit werden die komplexen Verhältnisse bei der Emission (dem Zusammen¬wirken von Fahrzeug und Fahrweg), bei der Transmission durch den homogenen oder geschichteten Boden und bei der Immission in Gebäuden näherungsweise erfasst. In (Auersch, 2020) wird gezeigt, dass diese einfachen Prognosemodelle die Ergebnisse von detaillierten Modellen wie der Finite-Element-Randelement-Methode für das Gleis, die Wellenzahlintegrale für den Boden und 3-dimensionale Finite-Element-Modelle für das Gebäude gut wiedergeben können. Dies entspricht auch der Absicht, die Prognosemodelle aus den Ergebnissen der Detailmodelle abzuleiten. Die drei Prognoseteile werden getrennt berechnet, aber es werden physikalisch sinn¬volle Schnittstellen verwendet. Für die Emission und Transmission sind es die auf den Untergrund wirkenden Erregerkräfte von Fahrzeug und Fahrweg, für die Transmission und Immission sind es die Freifeldamplituden des Bodens. T2 - 17. D-A-CH-Tagung Erdbebeningenieurwesen und Baudynamik CY - Online meeting DA - 16.09.2021 KW - Erschütterungen KW - Emission KW - Transmission KW - Immission PY - 2021 AN - OPUS4-53314 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Die Amplitudenabnahme im Boden bei Punkt- und Zuglast N2 - Die Linienlastgesetzmäßigkeit gilt nicht für Zuganregung. Die Punktlastgesetzmäßigkeit wird bei kurzen Zügen in größeren Entfernungen erreicht. Bei langen Zügen reduziert sich die Abnahme um r-0,3 für die theoretische exponentielle Dämpfungsabnahme, um r-0,5 für die vereinfachte potentielle Dämpfungsabnahme. Die gemessenen Abnahmereduktionen liegen in diesem Bereich. T2 - Norm-Arbeitsausschuss Schwingungsminderung in der Umgebung von Verkehrswegen CY - Cologne/Germany und Online meeting DA - 28.10.2021 KW - Amplituden-Abstands-Gesetze KW - Geometrie KW - Dämpfung PY - 2021 AN - OPUS4-53704 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Die Berechnung der Einfügedämmung bei Schienenfahrwegen – die Impedanzmethode mit einem Freiheitsgrad N2 - Mit dieser Methode kann man die Einfügedämmung eines Schienenstützpunkts/einer Schwelle korrekt berechnen. Sie gilt in ihrer ursprünglichen Form für eine Unterschottermatte in einem Tunnel T2 - Norm-Arbeitsausschuss Schwingungsminderung in der Umgebung von Verkehrswegen CY - Online meeting DA - 20.1.2022 KW - Impedanzmethode KW - Elastische Elemente KW - Schienenfahrweg PY - 2022 AN - OPUS4-54243 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Elastische Elemente in der Emission, Transmission und Immission von Bahnerschütterungen N2 - Dieser Vortrag präsentiert einige Prinzipien und einige Beispiele zur Minderung von Eisenbahnerschütterungen. Die Prinzipien unterscheiden sich für die Minderungsmaßnahmen im Gleis, im Boden und bei Gebäuden. Kraftübertragungsfunktionen isolierter und nicht isolierter Gleissysteme, reflektierte und durchgelassene Wellenamplituden bei gefüllten Bodenschlitzen und die Übertragung der Freifeldschwingungen ins Gebäude werden analysiert. Bei den einfachen Gleismodellen muss der richtige Anteil der unabgefederte Fahrzeugmasse zum eindimensionalen Gleismodell hinzugefügt werden. Der Minderungseffekt eines gefüllten Bodenschlitzes ist von der Steifigkeit und nicht von der Impedanz des Schichtmaterials bestimmt. Bei einer elastischen Gebäudelagerung muss die Minderungswirkung mit der richtigen Boden- (Fundament-) Steifigkeit berechnet werden, und das abgeminderte Gebäudeverhalten hängt wesentlich von der effektiven Gebäudemasse ab, die mit zunehmender Frequenz deutlich kleiner als die starre Gebäudemasse ist. T2 - Norm-Arbeitsausschuss Schwingungsminderung in der Umgebung von Verkehrswegen CY - Bludenz, Austria DA - 17.5.2022 KW - Erschütterungsminderung KW - Bahngleis KW - Bodenschlitz KW - Gebäudelagerung KW - Elastische Elemente PY - 2022 AN - OPUS4-54916 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Auersch, Lutz T1 - Praxisgerechtes Prognoseverfahren für Schienenverkehrserschütterungen N2 - Im Forschungsvorhaben „Praxisgerechtes Prognoseverfahren für Schienenverkehrserschütterungen“ wurde ein Prognoseprogramm entwickelt, das die Erschütterungsemission, -transmission und –immission für verschiedene Bahnen, verschiedene Böden, verschiedene Gebäude und verschiedene Minderungsmaßnahmen prognostizieren und bewerten kann. Es ist gelungen, ein Prognoseverfahren zusammenzustellen, das sowohl wissenschaftlich fundiert als auch einfach handhabbar ist. Die besonderen Merkmale des Prognoseverfahrens sind folgende: - Das Prognoseprogramm basiert auf physikalischen Modellen. - Das Programm besitzt klar definierten Schnittstellen zwischen der Emission und der Transmission und zwischen der Transmission und der Immission. Im ersten Fall sind es die auf den Untergrund wirkenden Erregerkräfte von Fahrzeug und Fahrweg, im zweiten Fall sind es die Freifeldamplituden des Bodens. - Das Prognoseprogramm erlaubt es, Messdaten einzulesen und in physikalisch sinnvoller Weise weiter zu verarbeiten. Damit sind die gesetzten Ziele für das Prognoseverfahren erfüllt und mit der Implementierung in einem benutzerorientierten Programm übertroffen worden. Es ist gelungen, ausgehend von komplexen Modellen einfache Modelle zu finden und anzupassen. Hier ist einerseits die vereinfachte Berechnung der Wellenausbreitung im Boden zu nennen, die sowohl für kontinuierlich steifer werdende Böden als auch für geschichtete Böden zutreffende Ergebnisse liefert. Andererseits war die vereinfachte Berechnung der Fahrweg-Boden-Wechselwirkung ein besonderer Erfolg, da sowohl Standardgleise als auch Bundesanstalt für Materialforschung und –prüfung (BAM) Seite 24 Praxisgerechtes Prognoseverfahren für Schienenverkehrserschütterungen Gleise mit Minderungsmaßnahmen (zum Beispiel mit Unterschottermatten) durch allgemeine Gesetzmäßigkeiten erfasst werden konnten. KW - Erschütterungen KW - Schienenverkehr KW - Prognoseprogramm KW - Theoretische Modelle KW - Messtechnische Ergebnisse KW - Verifikation PY - 2006 UR - https://www.tib.eu/de/suchen/id/TIBKAT:521052653/Praxisgerechtes-Prognoseverfahren-f%C3%BCr-Schienenverkehrsersch%C3%BCtterungen?cHash=ae6365e413192da1dcf4ceeefa43e426 SP - 1 EP - 36 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-55247 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Auersch, Lutz A1 - Krüger, F. T1 - Untersuchung zur Ausbreitung und Minderung von Erschütterungen an Trassen des schienengebundenen Nahverkehrs in Geländeniveau N2 - Prognosen zur Erschütterungsausbreitung und zur Immissionssituation in der Umgebung von Bahntrassen sind wegen der Vielfalt der Einflussfaktoren oft mit erheblichen Unsicherheiten behaftet. Ziel der Arbeit war es, die Bedingungen für die Ausbreitung von Körperschall und Erschütterungen genauer zu erfassen und in ein für Prognosezwecke geeignetes Rechenmodell umzusetzen. Aufbauend auf theoretischen Untersuchungen zum Übertragungsverhalten des Bodens und von Gebäuden wurden Erschütterungsmessungen an Trassen verschiedener Bahnen des Stadtverkehrs Erregerspektren sowie mit besonderen Messverfahren Bodenkennwerte ermittelt. Diese dienen als Grundlage für die Modellrechnungen über die Ausbreitung von Erschütterungen. Durch Kontrollmessungen wurde die Anwendbarkeit des Modells überprüft. Es zeigten sich z.T. gute Übereinstimmungen, jedoch wurde auch die Notwendigkeit einer weiteren Verbesserung deutlich. Die Möglichkeiten der Minderung der Erschütterungen wurden umfassend behandelt. KW - Schienenverkehr KW - Erschütterungen KW - Körperschall KW - Rechenmodell KW - Immissionsminderung KW - Immissionsprognose PY - 1983 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544190 N1 - BMFT-Vorhaben TV 7954 - AP 09 000 VL - Bericht 9 SP - 1 EP - 525 PB - Studiengesellschaft für unterirdische Verkehrsanlagen (STUVA) CY - Köln AN - OPUS4-54419 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Auersch, Lutz A1 - Hebener, Hans A1 - Rücker, Werner T1 - Erschütterungen infolge Schienennahverkehr - Theoretische und meßtechnische Untersuchungen zur Emission, zur Ausbreitung durch den Boden und zur Übertragung in Gebäude N2 - Das Ziel der Untersuchungen ist ein Prognosemodell für Erschütterungen infolge Schiennahverkehr. Ergänzend zu Bericht 9 wird insbesondere der dreidimensionale, instationäre und zufällige Charakter der Erschütterungsquelle und dessen Auswirkungen auf die Ausbreitung durch den Boden und auf die Schwingungen benachbarter Gebäude untersucht. Es werden jeweils theoretisch/numerisch und experimentell/messtechnisch - Amplituden-Abstands-Gesetze, - Freifeld-Bauwerks-Übertragungsverhältnisse und - Deckenresonanzüberhöhungen ermittelt, die zusammen mit den Ergebnissen des Berichts 9 eine realistische Prognose von Erschütterungen ermöglichen. Die Ergebnisse sind in einem einfachen Prognoseprogramm zusammengefasst, mit dem im konkreten Anwendungsfall der Einfluss einer Reihe von Quell-, Boden- und Bauwerkseigenschaften erfasst wird. KW - Erschütterungen KW - Körperschall KW - Immissionsprognose KW - Schienenverkehr KW - Bauwerksschwingungen KW - Deckenresonanz KW - Wellenausbreitung KW - Bodendynamik PY - 1986 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544209 N1 - BMFT-Vorhaben TV 8329 VL - Bericht 19 SP - 1 EP - 360 PB - Studiengesellschaft für unterirdische Verkehrsanlagen (STUVA) CY - Köln AN - OPUS4-54420 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Wellenausbreitung und Pfähle im inhomogenen Boden – Gesetzmäßigkeiten für die Gründung von Windenergieanlagen und für die Prognose von Bahnerschütterungen aus Tunneln N2 - Es wird eine gekoppelte Finite-Element-Randelementmethode zur Berechnung von Pfahlgrün-dungen in inhomogenen (geschichteten) Böden vorgestellt. Sie beruht auf den Greenschen Funktionen (Punktlastlösungen) für inhomogene Böden. Diese Lösungen können auch für die Wellenausbreitung in der Tiefe, zum Beispiel von einem Bahntunnel zu einem eingebetteten Gebäude, dem Kellergeschoss benutzt werden. Die Punktlastlösungen in der Tiefe werden mit der Halbraumlösung an der Bodenoberfläche und mit der Vollraumlösung verglichen und Gesetzmäßigkeiten für geschichtete Böden abgeleitet. Zu den Pfahlgründungen werden die Horizontalnachgiebigkeiten von Pfählen in geschichteten Böden dargestellt. Für den homogenen und den kontinuierlich steifer werdenden Boden werden Potenzgesetze für den Boden- und Pfahleinfluss aufgestellt. Der Vergleich mit dem Winkler-Modell der rein lokalen Bodenreaktion zeigt, dass die Winkler-Bettung in allen Fällen einen zu kleinen Bodeneinfluss ergibt. T2 - 7. VDI-Fachtagung Baudynamik CY - Würzburg, Germany DA - 27.04.2022 KW - Wellenausbreitung in der Tiefe KW - Nachgiebigkeiten KW - Windenergieanlagen PY - 2022 SN - 978-1-18-092379-6 SN - 0083-5560 VL - 2379 SP - 697 EP - 706 PB - VDI-Verlag CY - Düsseldorf AN - OPUS4-54768 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Wellenausbreitung und Pfähle im inhomogenen Boden – Gesetzmäßigkeiten für die Gründung von Windenergieanlagen und für die Prognose von Bahnerschütterungen aus Tunneln N2 - Es wird eine gekoppelte Finite-Element-Randelementmethode zur Berechnung von Pfahlgrün-dungen in inhomogenen (geschichteten) Böden vorgestellt. Sie beruht auf den Greenschen Funktionen (Punktlastlösungen) für inhomogene Böden. Diese Lösungen können auch für die Wellenausbreitung in der Tiefe, zum Beispiel von einem Bahntunnel zu einem eingebetteten Gebäude, dem Kellergeschoss benutzt werden. Die Punktlastlösungen in der Tiefe werden mit der Halbraumlösung an der Bodenoberfläche und mit der Vollraumlösung verglichen und Gesetzmäßigkeiten für geschichtete Böden abgeleitet. Zu den Pfahlgründungen werden die Horizontalnachgiebigkeiten von Pfählen in geschichteten Böden dargestellt. Für den homoge-nen und den kontinuierlich steifer werdenden Boden werden Potenzgesetze für den Boden- und Pfahleinfluss aufgestellt. Der Vergleich mit dem Winkler-Modell der rein lokalen Boden-reaktion zeigt, dass die Winkler-Bettung in allen Fällen einen zu kleinen Bodeneinfluss ergibt. T2 - 7. VDI-Fachtagung Baudynamik CY - Würzburg, Germany DA - 27.4.2022 KW - Wellenausbreitung in der Tiefe KW - Pfahlnachgiebigkeiten KW - Erschütterungen KW - Tunnel PY - 2022 AN - OPUS4-54769 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Einwirkung von Erschütterungen auf Gebäude N2 - Ergebnisse eines Finite-Element Modells lassen sich mit einem Stabmodell interpretieren und verallgemeinern. T2 - Projektausschuß Lärmminderung im Schienennahverkehr CY - Hannover, Germany DA - 22.02.1983 KW - Gebäudeschwingungen KW - Stockwerksschwingungen PY - 1983 AN - OPUS4-38040 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Die Bedeutung von Eisenbahn-Achsüberfahrten für die Bodenerschütterungen und Brückenschwingungen - Auswertung von Messungen verschiedener Länder N2 - Messungen bei Fern- und Hochgeschwindigkeitsbahnen aus verschiedenen Ländern (Portugal, Spanien, Belgien, Großbritannien, Deutschland, Schweiz, China, Japan u.a.) sollen die besondere Wichtigkeit eines mittelfrequenten Erschütterungsanteils zeigen. Relativ einheitlich werden dabei drei zusammenhängende Terzen mit angehobenen Amplituden beobachtet. Dieser Erschütterungsanteil dominiert mit zunehmender Entfernung vom Gleis das Frequenzspektrum der Erschütterungen. Die hochfrequenteren Anteile nehmen aufgrund der Materialdämpfung des Bodens stärker ab, die tieffrequenteren Anteile aus der sogenannten Quasistatik, der Vorbeifahrt der statischen Achslasten, verschwinden innerhalb der ersten zehn Meter vom Gleis fast vollständig. Die Frequenzcharakteristik des mittelfrequenten Erschütterungsanteils wird durch die Achsfolge des Zuges bestimmt. Im Terzmaßstab ist die Achsfolge im Drehgestell maßgeblich für die Ausprägung von zwei Amplitudenminima, die den Frequenzbereich eingrenzen. Diese Achsfolgespektren sind auch bei Brückenschwingungen von Bedeutung. Sie können die schwächere oder stärkere Anregung einzelner Brückeneigenschwingungen regeln. Die Ursachen der Boden- oder Brückenschwingungen sind mit den Achsfolgespektren noch nicht geklärt. Bei der Brücke und beim Boden können kurzwelligere Gleislagefehler (auch Radunrundheiten 1. Ordnung) Fahrzeugbeschleunigungen und damit dynamische Kräfte auf das Gleis erzeugen. Bei der Brücke ist die diskontinuierliche Auf- und Abfahrt der Achsen ebenfalls eine relevante Anregung, während die Kraftimpulse auf das Gleis, die durch die Achsüberfahrten entstehen, für die Wellenausbreitung im Boden von Bedeutung sind. Heterogene Böden oder Gleise ergeben einen Zerstreuanteil der Achsüberfahrtimpulse. Fallbeispiele mit verschiedenen Böden und verschiedenen Fahrgeschwindigkeiten werden ausgewertet, um die Ursachen und Gesetzmäßigkeiten des mittelfrequenten Erschütterungsanteils zu erkennen. T2 - Dynamik Tage Wien 2016 CY - Vienna, Austria DA - 06.10.2016 KW - Bodeneigenschaften KW - Bahnerschütterungen KW - Frequenzbereiche KW - Erschütterungsursachen PY - 2016 AN - OPUS4-37945 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Die Bedeutung von Eisenbahn-Achsüberfahrten für die Bodenerschütterungen und Brückenschwingungen N2 - Messungen bei Fern- und Hochgeschwindigkeitsbahnen aus verschiedenen Ländern (Portugal, Spanien, Belgien, Großbritannien, Deutschland, Schweiz, China, Japan u.a.) sollen die besondere Wichtigkeit eines mittelfrequenten Erschütterungsanteils zeigen. Relativ einheitlich werden dabei drei zusammenhängende Terzen mit angehobenen Amplituden beobachtet. Dieser Erschütterungsanteil dominiert mit zunehmender Entfernung vom Gleis das Frequenzspektrum der Erschütterungen. Die hochfrequenteren Anteile nehmen aufgrund der Materialdämpfung des Bodens stärker ab, die tieffrequenteren Anteile aus der sogenannten Quasistatik, der Vorbeifahrt der statischen Achslasten, verschwinden innerhalb der ersten zehn Meter vom Gleis fast vollständig. Die Frequenzcharakteristik des mittelfrequenten Erschütterungsanteils wird durch die Achsfolge des Zuges bestimmt. Im Terzmaßstab ist die Achsfolge im Drehgestell maßgeblich für die Ausprägung von zwei Amplitudenminima, die den Frequenzbereich eingrenzen. Diese Achsfolgespektren sind auch bei Brückenschwingungen von Bedeutung. Sie können die schwächere oder stärkere Anregung einzelner Brückeneigenschwingungen regeln. Die Ursachen der Boden- oder Brückenschwingungen sind mit den Achsfolgespektren noch nicht geklärt. Bei der Brücke und beim Boden können kurzwelligere Gleislagefehler (auch Radunrundheiten 1. Ordnung) Fahrzeugbeschleunigungen und damit dynamische Kräfte auf das Gleis erzeugen. Bei der Brücke ist die diskontinuierliche Auf- und Abfahrt der Achsen ebenfalls eine relevante Anregung, während die Kraftimpulse auf das Gleis, die durch die Achsüberfahrten entstehen, für die Wellenausbreitung im Boden von Bedeutung sind. Heterogene Böden oder Gleise ergeben einen Zerstreuanteil der Achsüberfahrtimpulse. Fallbeispiele mit verschiedenen Böden und verschiedenen Fahrgeschwindigkeiten werden ausgewertet, um die Ursachen und Gesetzmäßigkeiten des mittelfrequenten Erschütterungsanteils zu erkennen. T2 - Dynamik Tage Wien 2016 CY - Vienna, Austria DA - 06.10.2016 KW - Bodeneigenschaften KW - Bahnerschütterungen KW - Frequenzbereiche KW - Erschütterungsursachen PY - 2016 AN - OPUS4-37947 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Ausbreitung und Minderung von Erschütterungen an Trassen des schienengebundenen Stadtverkehrs in Geländeniveau N2 - Eigenschaften der Halbraumlösungen und Approximation durch Finite-Element-Rechnungen Einfache Prognoseformel mit Dämpfungseinfluss, Schichtung, konzentrierten Parametern. T2 - Projektausschuss-Sitzung "Lärmminderung im Schienennahverkehr" CY - München, Germany DA - 09.11.1981 KW - Erschütterungsprognose KW - Homogener und geschichteter Halbraum PY - 1981 AN - OPUS4-37950 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Erschütterungen durch Schienenverkehr – Messergebnisse, Quellstärken und Amplituden-Abstands-Gesetze N2 - Es werden Messergebnisse und theoretische Studien vorgetragen, die sich mit der Erschütterungsstärke in der Nähe von Bahnlinien und deren Abnahme mit der Entfernung beschäftigen. Durch die Ausdehnung der Anregung über die Zuglänge ergibt sich bei gleichphasiger Anregung ein Bereich konstanter Amplituden, bei zufälliger Phasenlage eine gleichmäßige Abnahme, die schwächer als bei einer Punktlast ist. Die Messungen belegen, dass es eine starke Abnahme für die Vorbeifahrt der statischen Achslasten gibt, so dass dieser Anteil spätestens in 10 m Abstand unbedeutend ist. Am Gleis selbst ist dieser (statische) Anteil dominant. T2 - Rad-Schiene-Seminar CY - Berlin, Germany DA - 18.02.1986 KW - Bahnerschütterungen KW - Amplituden-Abstands-Gesetz KW - Zuganregung PY - 1986 AN - OPUS4-38079 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -