TY - CONF A1 - Auersch, Lutz A1 - Markfort, Greta T1 - Static and dynamic behaviour of pile foundations in homogeneous and inhomogeneous soils N2 - Offshore wind energy towers are dynamically loaded by waves and wind. Pile foundations provide stiffness and damping and should be properly calculated. A combined finite-element boundary-element method for the dynamic interaction of flexible structures and the soil has been developed. The flexible structures such as single piles or complete wind energy towers are modeled by the finite element method whereas the homogeneous or layered soil is modeled by the boundary element method which uses the Green’s functions for interior loads in the layered half-space to establish the dynamic stiffness matrix of the soil. Soils with a stiffness that is continuously increasing with depth can be modeled as multi-layer soils with step-wise increasing stiffness. The effects of different parameters such as the stiffness of the soil, the axial and bending stiffness of the pile, and the radius of the cylindrical contact area will be analysed for the different components of excitation (vertical, horizontal, rotation and coupling). The results can be determined as specific power laws which are different for the different load cases and for the different soil models (Winkler support, homogeneous continuum, continuum with increasing stiffness). The dynamic effect of radiation damping will be analysed by the frequency-dependent compliance functions. A clear layering of the soil can cause noticeable changes in the dynamic compliances as reductions of the stiffness and the damping in certain frequency ranges (below and around layer resonance frequencies). The distribution of the displacements along the pile help to explain the observed laws. An example of an offshore wind energy tower has been modeled and calculated for wind, wave and weight loads. The resonances of the tower are usually limited by the radiation damping which is strongest for a soft soil. T2 - COMPDYN 2017 CY - Rhodes, Greece DA - 15.06.2017 KW - Pile foundation KW - Finite-element boundary-element method KW - Pile bending stiffness KW - Soil stiffness KW - Continuously inhomogeneous soils KW - Layered soils KW - Wind energy tower PY - 2017 SP - 4675 EP - 4690 PB - NTUA CY - Athens AN - OPUS4-42089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir T1 - Dynamic testing of tracks and track sites before and after construction, after damage and after repair N2 - The Federal Institute of Material Research and Testing (BAM) has collected some experience with the testing of damaged, repaired and newly constructed railway tracks. The experimental methods are hammer testing of the track at different positions, hammer testing of the soil, measurement of train passages, and in all cases, measurements with geophones at different positions. The measured signals are evaluated for wave velocities (dispersion of the soil or the track-soil system), for transfer functions (transfer admittances of the soil, compliances of the track in amplitude and phase), and one-third octave band spectra of the track response to hammer and train excitation. These methods are applied at different stages of the track construction. Before track construction, wave velocities and transfer functions of the sub-soil can indicate problems with soft soils. After track construction, a check of the acceptable state of the track can be done by comparison of many excitation positions and track sites. After a track damage (a lose sleeper or a lose plate of a slab track) and after its repair, the sensitivity of the different measurement quantities to different track errors and the achieved improvement of the repair can be determined. The contribution shows examples of all these track situations. T2 - First International Conference on Rail Transportation CY - Chengdu, China DA - 10.7.2017 KW - Track damage KW - Dynamic testing KW - Hammer tests KW - Train passages PY - 2017 SP - 1 EP - 9 PB - Southwest Jiaotong University CY - Chengdu, China AN - OPUS4-42090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Tracks with under-ballast plates and their mitigation of train induced ground vibration N2 - Experiments have been performed at a test site with six different tracks with under-ballast plates. Hammer excitations of the soil and the tracks as well as train passages have been measured. The experimental observations are as follows. 1. The natural soil is stiff gravel whereas the railway dam consists of softer material. 2. The track compliance indicates a soft ballast if no train is present to provide a confining pressure. 3. The track response to the train passages can be split into a low-frequency region which is ruled by the static loads and a high-frequency region which is ruled by dynamic loads. 4. The track responses to hammer and track excitation indicate the presence of many voids between the sleepers and the ballast. 5. The ground vibrations are highly influenced by the soil. Due to the stiff soil at the site, the hammer and train induced spectra have a considerable high-frequency content. 6. A reduction of the ground vibration has been observed in a low-frequency range. The mitigation effects of an under-ballast plate are also investigated by calculations of a wavenumber domain model. The under-ballast plate has an effect at low frequencies where it distributes the static load over a longer track section. The impulse of the axle passage is longer and the frequencies are lower due to the plate stiffness. The axle impulses could yield a low-frequency ground vibration in an irregular soil with a randomly varying stiffness. This low-frequency part of the ground vibration (the scattered axle impulses) seem to be reduced by the under-ballast plate. T2 - 24th International Congress on Sound and Vibration CY - London, UK DA - 23.7.2017 KW - Railway vibration KW - Ballast tracks KW - Under-ballast plate KW - Ground vibration PY - 2017 SP - 1 EP - 8 PB - IIAV CY - Auburn, USA AN - OPUS4-42091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -