TY - CONF A1 - Auersch, Lutz A1 - Said, Samir ED - Gao, G. T1 - The influence of soil properties on the ground vibration due to railway traffic and other sources - the comparability of different sites T2 - 6th International symposium on environmental vibration: Prediction, monitoring, mitigation and evaluation - Advances in environmental vibration (Proceedings) T2 - 6th International symposium on environmental vibration: Prediction, monitoring, mitigation and evaluation - Advances in environmental vibration CY - Shanghai, China DA - 2013-11-08 KW - Soil properties KW - Railway track KW - Ground vibration KW - Measurement KW - Assessment KW - Mitigation PY - 2013 SN - 978-7-5608-5303-1 SP - 175 EP - 186 PB - Tongji University Press AN - OPUS4-29731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Auersch, Lutz A1 - Semrau, Norbert A1 - Schmid, Wolfgang A1 - Said, Samir A1 - Rücker, Werner ED - Grundmann, H. ED - Schuëller, G. I. T1 - Theory and experiments on wave propagation, on track-soil and on soil-building interaction related to railway induced vibration T2 - EURODYN 2002 - Structural dynamics / Vol. 2 T2 - 5th International Conference on Structural Dynamics ; 4th International Conference on Structural Dynamics ; EURODYN 2002 CY - Munich, Germany DA - 2002-09-02 PY - 2002 SN - 90-5809-512-6 VL - 2 SP - 1137 EP - 1142 PB - Balkema CY - Lisse AN - OPUS4-1595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Track-soil dynamics – calculation and measurement of damaged and repaired slab tracks JF - Transportation Geotechnics N2 - The damage detection and repair control have become important tasks for ballast and slab tracks. Measurements which compare the damaged and the repaired status of the same track section at different times, or which compare a damaged and an intact track section at the same time, have been successfully performed at some sites in Germany. The loss of contact between the sleeper and the track plate, between the track plate and the base plate, and between the base plate and the base layer have been analysed. The soil properties of each site have been measured and have been used to establish realistic track-soil models. Theoretical results of the wavenumber domain and the finite-element boundary element method have been compared with the experimental results. The observed experimental and theoretical results, changes in the time histories of displacements and velocities due to train passages and in the transfer functions (receptances) due to hammer impacts, are encouraging that these measurements can be used to detect track damage. KW - Railway track KW - Slab track KW - Track-soil interaction KW - Field tests KW - Track damage KW - Monitoring KW - Finite element method KW - Boundary element method PY - 2017 DO - https://doi.org/10.1016/j.trgeo.2017.06.003 SN - 2214-3912 VL - 12 IS - September SP - 1 EP - 14 PB - Elsevier CY - London AN - OPUS4-42581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Müller, R. A1 - Brechbühl, Y. A1 - Lutzenberger, S. A1 - Said, Samir A1 - Auersch, Lutz A1 - Guigou-Carter, C. A1 - Villot, M. A1 - Müller, R. ED - Degrande, G. ED - al., et T1 - Vibration Excitation at Turnouts, Mechanism, Measurements and Mitigation Measures T2 - Noise and Vibration Mitigation for Rail Transportation Systems, Proceedings of the 13th International Workshop on Railway Noise, Notes on Numerical Fluid Mechanics and Multidisciplinary Design 150 N2 - There is a strong need for cost-effective mitigation measures for turnouts. SBB has initiated a series of examinations using different methodologies to gain a deeper understanding of the excitation mechanisms at low frequencies, in addition to that obtained in the RIVAS project. To date it is not yet clear what constitutes a complete measurement data set that would enable understanding most of the vibration excitation mechanisms in turnouts. Increasing vibration at turnouts in comparison to normal track is observed for all measured frequencies. The different methodologies are presented in the paper. Under-sleeper pads (USP) are a cost-effective method to reduce vibration at frequencies above 63 Hz (1/3 octave), but there is probably no improvement for frequencies below 63 Hz. A first test of new frog geometry did not show relevant improvements in Vibration emission in comparison to a reference frog geometry. Axle box acceleration measurements are an interesting method to identify defects in a turnout. A specialized measurement system of rail roughness could identify certain geometry Problem areas for some frogs. Noise increases also are observed at turnouts for frequencies ranging between 80 to 1000 Hz. The use of railway source models to calculate contact forces for ballasted track and turnouts seems promising, in particular for understanding the influence of ground. KW - Turnout KW - Switch KW - Vibration excitation KW - Vibration measurements PY - 2021 SN - 978-3-030-70288-5 DO - https://doi.org/10.1007/978-3-030-70289-2_42 SN - 1612-2909 VL - 150 SP - 403 EP - 410 PB - Springer Nature Switzerland AG CY - Cham AN - OPUS4-52612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir T1 - Vibration measurements for the control of damaged and repaired railway tracks T2 - Proceedings of the 7th International Symposium on Environmental Vibration and Transportation Geodynmaics N2 - The damage detection and repair control have become important tasks for ballast and slab tracks. Measurements which compare the damaged and the repaired status of the same track section at different times, or which compare a damaged and an intact track section at the same time, have been successfully performed at some sites in Germany with slab tracks and ballast tracks and compared with the theoretical behaviour of intact and damaged tracks. The loss of contact between the sleeper and the plate, between the plate and the base layer, and some problems with soft or weakened soil have been analysed. The observed results, changes in the time histories of displacements and velocities due to train passages and in the transfer functions (compliances) due to hammer impacts, are encouraging that these measurements can be used to detect track damage. In addition, calculations with the combined finite-element boundary-element method have been used to confirm the conclusions about intact or damaged railway tracks. T2 - 7th International Symposium on Environmental Vibration and Transportation Geodynmaics CY - Hangzhou, China DA - 28.10.2016 KW - Railway track KW - Slab track KW - Ballast track KW - Track-soil interaction KW - Field tests KW - Track damage monitoring KW - Finite element method KW - Boundary element method PY - 2016 SP - 3 EP - 19 AN - OPUS4-38261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Auersch, Lutz A1 - Said, Samir ED - Bian, Xuecheng ED - Chen, Y. ED - Ye, X. T1 - Vibration measurements for the control of damaged and repaired railway tracks T2 - Environmental Vibrations and Transportation Geodynamics N2 - This contribution presents experimental methods to detect track damage. At BAM (Federal Institute of Material Research and Testing), a measuring car with a measuring system of 72 channels, geophones, mountings, cables, harmonic and impulsive exciters is used for dynamic measurements of the track, the soil and buildings. An instrumented hammer allows force measurements and to evaluate transfer functions of the track, and the soil. Wave measurements are used to identify the soil characteristics. Train passages are measured at the track and for the train induced ground vibrations. In addition to these in situ options, tests of tracks or track elements can be performed in a large laboratory. KW - Track vibration KW - Track damage PY - 2018 SN - 978-981-10-4507-3 DO - https://doi.org/10.1007/978-981-10-4508-0_2 SP - 13 EP - 30 PB - Springer CY - Singaporer AN - OPUS4-45457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -