TY - CONF A1 - Auersch, Lutz T1 - Some effects of the layering of the soil on wave propagation and foundation vibration T2 - 7th Conf. Soil Dynamics and Eartquake Engeneering CY - Crete, Greece DA - 1995-05-25 PY - 1995 AN - OPUS4-6609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Prospecting soft deposits by the analysis of the wave propagation in theory and experiment T2 - 3rd Int. Symposium on "Geotechnics Related to the European Environment" CY - Berlin, Germany DA - 2000-06-21 PY - 2000 AN - OPUS4-6610 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Theory and experiments on wave propagation, on track-soil and on soil-building interaction related to railway induced vibration T2 - Fourth International Conference on Structural Dymanics (EURODYN 4) CY - Munich, Germany DA - 2002-09-02 PY - 2002 AN - OPUS4-6614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Vehicle-Track-Interaction and Soil Dynamics T2 - IAVSD-Conference "The Dynamics of Vehicles on Roads and Tracks" 115th Symposium Dynamics of Vehicles on Roads and Track (IAVSD) CY - Budapest, Hungary DA - 1997-08-25 PY - 1997 AN - OPUS4-6603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Auersch, Lutz ED - Cassereau, D. T1 - The influence of the track on railway induced ground vibration T2 - Joint Congress CFA/DAGA '04 ; 7e Congrès Français d'Acoustique ; 30. Deutsche Jahrestagung für Akustik ; Salon Européen de l'Acoustique ; Europäische Akustik-Austellung CY - Strasbourg, France DA - 2004-03-22 PY - 2004 SN - 2-9521105-2-2 VL - 2 SP - 1079 EP - 1080 PB - Société Française d'Acoustique (SFA) CY - Paris AN - OPUS4-3710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Ground vibration due to railway traffic - the calculation of the effects of moving static loads and their experimental verification T2 - 8th Workshop on Railway Noise and Vibration CY - Buxton, England DA - 2004-09-08 PY - 2004 AN - OPUS4-5448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Simplified methods for wave propagation and soil-structure interaction: the dispersion of layered soil and the approximation of FEBEM results T2 - Eurodyn 2005 CY - Paris, France DA - 2005-09-04 PY - 2005 AN - OPUS4-11876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - A practical method for the prediction of railway vibration T2 - Eurodyn 2005 CY - Paris, France DA - 2005-09-04 PY - 2005 AN - OPUS4-11879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - The excitation of ground vibration by rail traffic: theory of vehicle-track-soil interaction and measurements on high-speed lines N2 - This article presents an integrated model for the computation of vehicle–track interaction and the ground vibrations of passing trains. A combined finite element and boundary element method is used to calculate the dynamic compliance of the track on realistic soil whereas multi-body models are used for the vehicle. The dynamic stiffness of the vehicle and that of the track are combined to calculate the dynamic axle loads due to the irregularities of the vehicle and the track as well as those due to sleeper passing excitation. These loads serve as input for the calculation of ground vibration near railway lines in the time and frequency domains. The theoretical methods and results have been proven by experiments in several respects and at several instances. First, on the occasion of the test and record runs of the Intercity Experimental, there was a very good quality of the vehicle and of the newly built track so that the deterministic parts of the excitation—the static load and the sleeper-passing component—could clearly be identified, the first being of minor importance apart from the track. Second, simultaneous measurements of the vehicle, the track and the soil at three different track situations were performed where we could verify the different parts of the stochastic excitation and their importance for the ground vibrations. The irregularities of the vehicle are dominant at high frequencies whereas the irregularities of the track are more important at lower frequencies. The comparison of the theory and the measurements also points to the phenomena of the vehicle–track resonance and the scattering of the quasi-static axle impulses by randomly varying soil. PY - 2005 DO - https://doi.org/10.1016/j.jsv.2004.06.017 SN - 0022-460X SN - 1095-8568 VL - 284 IS - 1-2 SP - 103 EP - 132 PB - Academic Press CY - London AN - OPUS4-11510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Schmid, G. T1 - A simple boundary element formulation and its application to wavefield excited soil-structure interaction PY - 1990 SN - 0098-8847 SN - 1096-9845 SN - 0020-7160 VL - 19 SP - 931 EP - 947 PB - Wiley CY - London AN - OPUS4-11563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -