TY - JOUR A1 - Auersch, Lutz T1 - Technically induced surface wave fields, Part I: Measured attenuation and theoretical amplitude-distance laws N2 - The attenuation of the amplitudes with distance of technically induced surface wave fields is analyzed in theory and experiments. Experimental results of technically induced ground vibration are presented and collected from literature, which show a power-low attenuation A ~ r–q of amplitudes A with distance r and exponents q > 0.5 higher than for elastic surface waves. Additional attenuation effects are analyzed theoretically. The most important effect is due to the material or scattering damping. Each frequency component is attenuated exponentially as A ~ exp(–kr), but for a broadband excitation, the sum of the exponential laws yields a power law with a higher exponent. Some more effects are discussed, for example the dispersion of the Rayleigh wave due to the layering of the soil, which yields a stronger attenuation A ~ r–q–dq, including an additional exponent of dq = 0.5 in case of an impulsive loading. PY - 2010 DO - https://doi.org/10.1785/0120090228 SN - 0037-1106 SN - 1943-3573 VL - 100 IS - 4 SP - 1528 EP - 1539 PB - Seismological Society of America CY - El Cerito, Calif. AN - OPUS4-22405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Auersch, Lutz A1 - Said, Samir ED - Xia, H. ED - Takemiya, H. T1 - Environmental vibrations due to different technical sources, amplitude-distance laws in experiment and theory T2 - 4th International Symposium on Environmental Vibration: Prediction, Monitoring and Evaluation (ISEV2009) CY - Beijing, China DA - 2009-10-28 KW - Amplitude-distance laws KW - Environmental vibrations KW - Field tests KW - Wave theory of attenuation PY - 2009 SN - 978-7-03-025765-9 VL - I SP - 757 EP - 762 PB - Science Press CY - Beijing, China AN - OPUS4-20788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Attenuation of ground vibrations due to different technical sources N2 - The attenuation of technically induced surface waves is studied theoretically and experimentally. In this paper, nineteen measurements of ground vibrations induced by eight different technical sources including road and rail traffic, vibratory and impulsive construction work or pile driving, explosions, hammer impulses and mass drops are described, and it is shown that the technically induced ground vibrations exhibit a power-law attenuation ν ~ r -q where the exponents q are in the range of 0.5 to 2.0 and depend on the source types. Comparisons performed demonstrate that the measured exponents are considerably higher than theoretically expected. Some potential effects on ground vibration attenuation are theoretically analyzed. The most important effect is due to the material or scattering damping. Each frequency component is attenuated exponentially as exp(-kr), but for a broad-band excitation, the sum of the exponential laws also yields a power law but with a high exponent. Additional effects are discussed, for example the dispersion of the Rayleigh wave due to soil layering, which yields an additional exponent of 0.5 in cases of impulsive loading. KW - Wave attenuation KW - Environmental vibrations KW - Field tests KW - Material damping KW - Scattering damping KW - Rayleigh wave PY - 2010 DO - https://doi.org/10.1007/s11803-010-0018-0 SN - 1671-3664 VL - 9 IS - 3 SP - 337 EP - 344 PB - Science Press CY - Beijing, China AN - OPUS4-22124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Dynamic behavior of slab tracks on homogeneous and layered soils and the reduction of ground vibration by floating slab tracks N2 - The dynamics of slab tracks and floating slab tracks are analyzed by multibeam models for the track and by integration in the wave-number domain for the soil, which is modeled as a layered half-space. Frequency-dependent compliances and force transfers are calculated for a great variety of track and soil parameters. The distribution of the load and the displacements along the track is investigated as well as the wave propagation perpendicular to the track and the ground vibration amplitudes. The floating slab track has a dominating plate-mat resonance and a strong high-frequency reduction. A track-soil resonance can also be recognized for an unisolated slab track in the case of layered soils. Generally, there is a strong damping of the track by the soil. The reduction effect of the slab mat is mainly owing to the elimination of this strong damping. The continuous soil yields slightly different rules for the displacements and force densities than those of a Winkler support. The total force transfer from the rail to the soil is the best criterion to judge the effectiveness of a floating slab track in reducing the ground vibration at some distance from the railway line. The total force transfer is easier to calculate than the double Fourier integrals of the ground vibration amplitudes, namely in the far field, and it has the best correlation with the reduction of the ground vibration. KW - Railway track KW - Slab track KW - Floating slab track KW - Track-soil interaction KW - Track vibration KW - Ground vibration KW - Force transfer PY - 2012 DO - https://doi.org/10.1061/(ASCE)EM.1943-7889.0000407 SN - 0733-9399 SN - 1943-7889 VL - 138 IS - 8 SP - 923 EP - 933 PB - Soc. CY - New York, NY, USA AN - OPUS4-26860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Train induced vibration of inhomogeneous soils - a prediction based on measured and calculated point-load solutions N2 - Vehicle, track and ground vibration as well as their interaction are considered in a combined finite-element boundary-element (FEBEM) approach. The layered soil is calculated in frequency wavenumber domain and the solution for fixed or moving point or track loads follow as wavenumber integrals. The soil results from the measurements and the detailed models are approximated by simple formula which are used for the prediction of train-induced ground vibration. The influence of the track and the soil on the train induced ground vibration is analysed by the detailed models. The ground vibrations strongly depend on the regular and random inhomogeneity of the soil. The regular layering of the soil yields a cut-on and resonance phenomenon while the random inhomogeneity yields a scattering of the axle impulses which proved to be important for high-speed trains. The attenuation with distance of the ground vibration due to the point-like excitations such as vibrator or hammer excitations and the train-track excitation are investigated and compared. All theoretical results are compared with measurements at conventional and high-speed railway lines. T2 - ICSV19 - 19th International congress on sound and vibration CY - Vilnius, Lithuania DA - 08.07.2012 PY - 2012 SN - 978-609-459-079-5 SP - 1 EP - 8 AN - OPUS4-27218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir ED - Gao, G. T1 - The influence of soil properties on the ground vibration due to railway traffic and other sources - the comparability of different sites T2 - 6th International symposium on environmental vibration: Prediction, monitoring, mitigation and evaluation - Advances in environmental vibration CY - Shanghai, China DA - 2013-11-08 KW - Soil properties KW - Railway track KW - Ground vibration KW - Measurement KW - Assessment KW - Mitigation PY - 2013 SN - 978-7-5608-5303-1 SP - 175 EP - 186 PB - Tongji University Press AN - OPUS4-29731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - How to quantify the vibration reduction of railway tracks T2 - Conference on Computational Methods in Structural Dynamics and Earthquake Engineering CY - Kos, Greece DA - 2013-06-11 PY - 2013 AN - OPUS4-29194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Rücker, Werner ED - Nielsen, J. T1 - Mitigation measures for ballasted tracks - optimisation of sleepers, sleeper pads and the substructure by combined finite-element boundary-element calculations T2 - IWRN11 - 11th International workshop on railway noise CY - Uddevalla, Sweden DA - 2013-09-09 PY - 2013 SP - 463 EP - 470 AN - OPUS4-29446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Wave propagation from hammer, vibrator and railway excitation – theoretical and measured attenuation in space and frequency domain N2 - The attenuation of wave amplitudes is ruled by the planar, cylindrical or spher-ical geometry of the wave front (the geometric or power-law attenuation) but also by the damping of the soil (an exponential attenuation). Several low- and high-frequency filter effects are derived for the layering and the damping of the soil, for the moving static and the distributed train loads and for a homoge-neous or randomly heterogeneous soil. Measurements of hammer- and train-induced vibrations at five sites have been analysed for these attenuation and filter effects. The measured attenuation with distance can be discribed by gen-eralised power laws and some reasons will be discussed. The theoretical filter effects can well be found in the measurements. T2 - 10th Wave Mechanics and Vibration Conference (WMVC)nce CY - Lisbon, Potugal DA - 04.07.2022 KW - Hammer impact KW - Train passage KW - Layered soil KW - Attenuation KW - Filter effects KW - Randomly heterogeneous soil KW - Scattering PY - 2022 AN - OPUS4-55246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - The role of vehicle dynamics in train-induced ground vibrations and the detection of irregular axle-pulse responses due to a varying track support stiffness N2 - Train-induced ground vibrations are all generated by the vehicle, by static or dynamic vehicle loads. The most important and most accepted excitation are the dynamic wheel loads from the passage over track irregularities. Dynamic wheel loads will be compared from parallel axle-box and ground vibration measurements at more than seven sites. Some low-frequency excitation of ground vibrations, typically between 10 and 30 Hz, cannot be found in the axle-box measurements. Therefore, other vehicle modes, such as rigid bogie modes, flexible carriage modes, rigid and flexible wheelset modes, have been analysed for additional excitation forces. These vehicle dynamics analyses give an explanation for higher axle-box results at high frequencies, but not for the excitation of the higher low-frequency ground-vibration component. Finally, the effect of the moving static train loads will be analysed. For a regular track and soil, the moving static train loads yield the quasi-static response which exists only in the low-frequency nearfield of the track. If the support stiffness is randomly varying along the track, the pulses on the track generate an additional low-frequency component which is called the irregular pulse responses. This component will be demonstrated by numerical analysis where all axle pulses are superposed in frequency domain. KW - Wheelset KW - Vehicle-track interaction KW - Rail roughness KW - Random dynamics and vibrations KW - Modal analysis PY - 2022 DO - https://doi.org/10.1177/09544097221086064 SN - 0954-4097 VL - 236 IS - 10 SP - 1218 EP - 1233 PB - Sage CY - London AN - OPUS4-55000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -