TY - CONF A1 - Auersch, Lutz T1 - Railway vibration fast physics based models for the prediction of ground vibration and the identification of track damage N2 - The following applications of machine learning will be discussed: 1. The prediction of the wave propagation from a railway line (completely physics based for surface lines, physics-based machine learning for tunnel lines) 2. The track behaviour for the emission of train-induced ground vibration (physics based for homogeneous soil, machine learning for layered soil) 3. Track damage detection and quantification from frequency response functions and moving load responses 4. Bridge damage detection and localisation from modal analysis and moving load 5. The use of axle-box acceleration for the identification of track/sub-soil condition and bridge resonances. The prediction of railway vibration usually needs time-consuming finite element, boundary element and wavenumber domain calculations. For a user-friendly prediction software however, fast calculations are needed. Several time-consuming detailed calculations have been used to develop simpler and fast models for the surface railway lines. The more challenging prediction from tunnel lines will be attacked by purely mathematical and by physics-informed machine learning. The dynamic stiffnesses of isolated or un-isolated railway tracks from detailed calculations with a continuous soil have been approximated with the simpler Winkler soil. The vehicle-track resonance (P2 resonance) rules the effect of the mitigation measures, and it can also be used for the on-board monitoring of the track and sub-soil condition. For the identification of track damage such as gaps between sleepers, track slabs and layers, detailed models with a continuous soil have been updated to get the best fit to the measured frequency response functions from hammer tests and the deformation pattern from the moving load response. Whereas the track damage can be locally identified, this is more difficult for bridges where the modal analysis gives mainly global information. The influence lines of the inclination for statically passing vehicles (locomotive, truck, compaction roller) have been used to localise bridge damage (stiffness variations). The on-board monitoring of rail bridges needs special conditions (regular trains with special speeds) to excite and measure the bridge resonance. T2 - 11th European Workshop on Structural Health Monitoring (EWSHM) CY - Potsdam, Germany DA - 10.06.2024 KW - Vibration prediction KW - Track damage detection KW - Human and machine learning KW - Wave propagation KW - Surface line KW - Tunnel KW - Bridge resonance PY - 2024 AN - OPUS4-61231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Reduction of ground induced building vibrations by kinematic and inertial soil structure interaction and by base isolation N2 - Many buildings on the soil have been measured and the transfer function freefield-to-building is ana-lysed. In general, an amplification at low frequencies, an amplification for the floor resonances, and a reduction for higher frequencies can be observed. Most of the measurement examples show a flexible behaviour along the height of the buildings. The prediction of building vibration consists typically of three steps. At first, the dynamic stiffness of the foundation and secondly the kinematic soil-structure interaction has to be calculated for example by the combined finite-element boundary-element meth-od. The stiffness of the foundation reduces the incoming waves (the kinematic interaction). Finally, the inertial interaction of the building with the foundation soil is calculated by the conventional finite ele-ment method where the dynamic foundation stiffness from the first step is added at the bottom of the building. The building on the compliant soil has a fundamental vertical resonance usually below 10 Hz. A parametrical variation clearly shows the influence of the elasticity of the building on this reso-nance frequency and amplitude. Moreover for column-type office buildings, the low-frequency floor resonances can further reduce this fundamental frequency. A 1-dimensional model has been estab-lished which can well approximate the behaviour of the 3-dimensional building models. It is used to demonstrate the effect of a base isolation with soft elements at the foundation. A rigid building model clearly over-estimates the isolation effect, which is smaller for a model with flexible walls, columns and floors. An even simpler model of an infinitely high building is suggested for the mitigation effect, and the resonance frequency of the rigid building should be replaced by a better performance indica-tor, which is based on the impedance ratio of the isolation and the wall and which can be also ex-pressed as a characteristic frequency. T2 - 30th International Congress on Sound and Vibration CY - Amsterdam, Netherlands DA - 08.07.2024 KW - Building vibrations KW - Base isolation KW - Foundation stiffness KW - Kinematic soil-structure interaction KW - Transfer functions of flexible buildings PY - 2024 AN - OPUS4-61229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Vehicle Dynamics and Train‑Induced Ground Vibration—Theoretical Analyses and Simultaneous Vehicle, Track, and Soil Measurements N2 - Ground vibrations near railway lines are generated by the forces that are acting between wheel and rail. It seems to be a straight forward assumption that the vehicle dynamics are important for the level and the frequencies of the excitation forces. Different vehicle dynamics phenomena are analysed for their role in the excitation of ground vibrations: rigid body modes of the bogies, elastic (bending) modes of the car body, and elastic modes of the wheelset. The theoretical analyses use rigid body models, simplified elastic models, and detailed elastic models. Some of these problems are vehicle–track interaction problems where 3D finite‑element boundary‑element models have been used for the track and soil. It is shown that the rigid or flexible vehicle modes are well in the frequency range of ground vibrations (4 to 100 Hz). They have an influence on the excitation force but the additional forces are rather small and can be neglected in ground vibration prediction. The theoretical results are checked by experimental results of a simultaneous measurement of vehicle, track, and ground vibrations. KW - Rigid vehicle model KW - Flexible car body KW - Flexible wheelset KW - Dynamic loads KW - Ground vibration PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569796 DO - https://doi.org/10.3390/vehicles5010013 VL - 5 IS - 1 SP - 223 EP - 247 PB - MDPI CY - Basel AN - OPUS4-56979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Some resonance effects of non-typical trains and railway bridges investigated by a frequency-domain method N2 - The resonances of railway bridges have often been analysed for short bridges under periodical high-speed trains, for simply supported one-span bridges, for the fundamental bridge mode, and by time-domain analyses. Many time-consuming calculations have been performed to establish simplified rules for standards. In this contribution, the passage of different (existing, new and hypothetic) trains over different bridges will be analysed in frequency domain by using three separated spectra with the purpose to get a better physical insight in the phenomena. At first, the excitation spectrum of the modal forces is built by the mode shape and the passage time of the train over the bridge. The second spectrum is the frequency response function of the bridge which include the modal frequency, damping and mass. The third part is the spectrum of the axle sequence of an arbitrary train which is not limited to periodical or specific (conventional, articulated, regular or standard) trains and which does not include any bridge parameters. The final solution in frequency domain is obtained as the product of these three complex, strongly varying spectra for the dominating bridge mode or in general as the sum of these products over all relevant bridge modes. The time domain solution is obtained via the inverse Fourier transform, and the resulting time histories have been successfully compared with some measurement results. The method is applied to the vertical and torsional modes of a mid-long 1-span bridge on elastomeric bearings under standard train speeds, and to a long multi-span integral bridge under long periodical freight trains. Different resonance and cancellation effects have been found for systematically varied train speeds according to the axle sequence of the whole train which is dominated by the two locomotives in that case. To be more specific, the first torsional mode of the mid-span bridge is excited for a train speed of 100 km/h whereas the second bending mode is excited for a train speed of 160 km/h. In both cases, the other mode is suppressed by the minima of the axle-distance spectra. In addition, the case of the German high-speed train ICE4 and the very high-speed hyperloop case will be discussed briefly. In general, it is shown that resonance effects are also worth to be studied for freight and passenger trains with lower speeds. T2 - EURODYN 2023 XII International Conference on Structural Dynamics CY - Delft, Netherlands DA - 03.07.2023 KW - Railway bridge KW - Transfer fuction KW - Modal load spectrum KW - Axle-sequence spectrum KW - Freight train KW - Passenger train KW - High-speed train KW - 2-span bridge PY - 2023 AN - OPUS4-57955 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Soil-foundation-structure problems related to train induced vibrations - the kinematic interaction of tunnel excited pile foundations and the inertial interaction of high rise buildings N2 - The soil-foundation-structure interaction is always important when building vibrations due to train passages have to be considered. The frequency range for train vibrations is up to 100 Hz. Normally, soft surface soils are crucial so that the wavelength can be much smaller than the foundation dimensions. Three topics are of interest for the prediction and the under-standing of building vibrations. 1. The „kinematic interaction“ or the „added foundation ef-fect“, which is calculated either by the combined boundary-element finite-element method or by the wavenumber domain method, results in a reduction of the free-field vibration. The stiff-ness of the foundation resists the wave deformation, plates and walls for horizontally propa-gating waves or piles for vertically incident waves. 2. The „inertial interaction“ or the „added building effect“ yields an amplification around the vertical building resonance, which may be a rigid mode on the compliant soil or a flexible mode for high-rise buildings, and a reduction at higher frequencies. This has been analysed by detailed finite element models of apartment and office buildings. 3. Base isolation is a method to further reduce building vibrations. It is important to know the soil-foundation impedance for the possible reduction, as well as the correct building impedance. A high-rise building cannot be considered as a rigid mass model. It has a frequency-dependent behaviour with longitudinal waves travelling from the founda-tion to the top of the building which include the effect of floor vibrations. Experiences from building projects in Vienna, Frankfort and Berlin will give some additional results for the ex-citation from tunnel lines, the kinematic response of pile foundations, and the inertial re-sponse of the flexible multi-storey buildings. T2 - Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2023) CY - Athens, Greece DA - 12.06.2023 KW - Soil-pile interaction KW - Pile groups KW - Kinematic interaction KW - Inertial interaction KW - High-rise buildings KW - Base isolation PY - 2023 AN - OPUS4-57954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Damage detection by flexibility functions and quasi-static moving load tests N2 - The contribution shows measurement examples of cars, floors, foundations, railway tracks, a footbridge, and a railbridge. Vibrations may include modes and waves. Namely in soil-structure interaction, modes are damped, shifted and prevented so that alternatives for the modal analysis are necessary: The approximation of the whole spectrum (flexibility function) and of the whole train passage (moving-load response). T2 - Symposium Emerging Trends in Bridge Damage Detection, Localization and Quantification CY - Luxembourg, Luxembourg DA - 05.05.2023 KW - Flexibility KW - Movin load test KW - Frequency response function KW - Cars KW - Floors KW - Foundations KW - Railway tracks KW - Footbridge KW - Railbridge KW - Damage detection PY - 2023 AN - OPUS4-57951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Train-induced ground vibrations – The emission and transmission from tunnel and surface lines N2 - Train-induced ground vibrations are quite different for tunnel and surface lines. The excitation of the track and ground vibration by the vehicle-track-soil interaction maybe influenced by the stiffer track support of the tunnel invert. The excited waves are propagating on a different path compared to the surface line. The wave propagation in the interior of the soil is calculated by a wavenumber integral in a similar way as the propagation along the surface and a general reduction of < 0.5 has been found. An additional reduction has been found because of the missing Rayleigh wave. The different excitation of tunnel lines is analysed theoretically by the combined finite-element boundary-element method and some results about the influencing tunnel and soil parameters will be shown. Measurements have been made at the Mühlberg-Tunnel in Germany. The vibrations of the train, the track and the soil have been measured simultaneously at the tunnel and a nearby surface line. Spectra will be shown for different train speeds between 60 and 160 km/h. A clear reduction effect for the tunnel line compared to the surface line has been observed in a specific (train-speed-dependent) frequency range. This agrees well with the observations of other research institutes. The mid-frequency tunnel-surface reduction seems to be a consequence of the stiffer track structure which leads to a wider distribution of the axle loads. Therefore, the axle impulses due to the train passage are longer and have a lower frequency content. This will have an effect on the ground vibrations at some distance which are present in case of an irregular transmission path through a ballast and soil with varying stiffness. A similar reduction effect can also be found for other track forms where the axle impulses are distributed on a longer track segment, for example slab tracks, tracks with under ballast plates, under ballast mats or under sleeper pads. T2 - 29th International Congress on Sound and Vibration (ICSV29) CY - Prague, Czech Republic DA - 09.07.2023 KW - Ground vibration KW - Railway tunnel KW - Layered soil KW - Surface-tunnel reduction KW - Measurements PY - 2023 AN - OPUS4-57956 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Soil-foundation-structure problems related to train induced vibrations - the kinematic interaction of tunnel excited pile foundations and the inertial interaction of high rise buildings N2 - The soil-foundation-structure interaction is always important when building vibrations due to train passages have to be considered. The frequency range for train vibrations is up to 100 Hz. Normally, soft surface soils are crucial so that the wavelength can be much smaller than the foundation dimensions. Three topics are of interest for the prediction and the under-standing of building vibrations. 1. The „kinematic interaction“ or the „added foundation ef-fect“, which is calculated either by the combined boundary-element finite-element method or by the wavenumber domain method, results in a reduction of the free-field vibration. The stiff-ness of the foundation resists the wave deformation, plates and walls for horizontally propa-gating waves or piles for vertically incident waves. 2. The „inertial interaction“ or the „added building effect“ yields an amplification around the vertical building resonance, which may be a rigid mode on the compliant soil or a flexible mode for high-rise buildings, and a reduction at higher frequencies. This has been analysed by detailed finite element models of apartment and office buildings. 3. Base isolation is a method to further reduce building vibrations. It is important to know the soil-foundation impedance for the possible reduction, as well as the correct building impedance. A high-rise building cannot be considered as a rigid mass model. It has a frequency-dependent behaviour with longitudinal waves travelling from the founda-tion to the top of the building which include the effect of floor vibrations. Experiences from building projects in Vienna, Frankfort and Berlin will give some additional results for the ex-citation from tunnel lines, the kinematic response of pile foundations, and the inertial re-sponse of the flexible multi-storey buildings. T2 - COMPDYN 2023 CY - Athen, Greece DA - 12.06.2023 KW - Kinematic Interaction KW - Inertial Interaction KW - Surface Foundation KW - Pile Foundation KW - High-Rise Building PY - 2023 SP - 1 EP - 14 PB - NTUA CY - Athens AN - OPUS4-57959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Some resonance effects of non-typical trains and railway bridges investigated by a frequency-domain method N2 - The resonances of railway bridges have often been analysed for short bridges under periodical high-speed trains, for simply supported one-span bridges, for the fundamental bridge mode, and by time-domain analyses. Many time-consuming calculations have been performed to establish simplified rules for standards. In this contribution, the passage of different (existing, new and hypothetic) trains over different bridges will be analysed in frequency domain by using three separated spectra with the purpose to get a better physical insight in the phenomena. At first, the excitation spectrum of the modal forces is built by the mode shape and the passage time of the train over the bridge. The second spectrum is the frequency response function of the bridge which include the modal frequency, damping and mass. The third part is the spectrum of the axle sequence of an arbitrary train which is not limited to periodical or specific (conventional, articulated, regular or standard) trains and which does not include any bridge parameters. The final solution in frequency domain is obtained as the product of these three complex, strongly varying spectra for the dominating bridge mode or in general as the sum of these products over all relevant bridge modes. The time domain solution is obtained via the inverse Fourier transform, and the resulting time histories have been successfully compared with some measurement results. The method is applied to the vertical and torsional modes of a mid-long 1-span bridge on elastomeric bearings under standard train speeds, and to a long multi-span integral bridge under long periodical freight trains. Different resonance and cancellation effects have been found for systematically varied train speeds according to the axle sequence of the whole train which is dominated by the two locomotives in that case. To be more specific, the first torsional mode of the mid-span bridge is excited for a train speed of 100 km/h whereas the second bending mode is excited for a train speed of 160 km/h. In both cases, the other mode is suppressed by the minima of the axle-distance spectra. In addition, the case of the German high-speed train ICE4 and the very high-speed hyperloop case will be discussed briefly. In general, it is shown that resonance effects are also worth to be studied for freight and passenger trains with lower speeds. T2 - XII International Conference on Structural Dynamics CY - Delft, The Netherlands DA - 03.07.2023 KW - Railway bridge KW - Transfer function KW - Modal force spectrum KW - Axle-sequence spectrum KW - Freight train KW - Passenger train KW - High-speed train KW - 2-span bridge KW - Long-span bridge PY - 2023 SP - 1 EP - 10 PB - TU Delft CY - Delft AN - OPUS4-57961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Train-induced ground vibrations - the emission and transmission from tunnel and surface lines N2 - Train-induced ground vibrations are quite different for tunnel and surface lines. The excitation of the track and ground vibration by the vehicle-track-soil interaction maybe influenced by the stiffer track support of the tunnel invert. The excited waves are propagating on a different path compared to the surface line. The wave propagation in the interior of the soil is calculated by a wavenumber integral in a similar way as the propagation along the surface and a general reduction of < 0.5 has been found. An additional reduction has been found because of the missing Rayleigh wave. The different excitation of tunnel lines is analysed theoretically by the combined finite-element boundary-element method and some results about the influencing tunnel and soil parameters will be shown. Measurements have been made at the Mühlberg-Tunnel in Germany. The vibrations of the train, the track and the soil have been measured simultaneously at the tunnel and a nearby surface line. Spectra will be shown for different train speeds between 60 and 160 km/h. A clear reduction effect for the tunnel line compared to the surface line has been observed in a specific (train-speed-dependent) frequency range. This agrees well with the observations of other research institutes. The mid-frequency tunnel-surface reduction seems to be a consequence of the stiffer track structure which leads to a wider distribution of the axle loads. Therefore, the axle impulses due to the train passage are longer and have a lower frequency content. This will have an effect on the ground vibrations at some distance which are present in case of an irregular transmission path through a ballast and soil with varying stiffness. A similar reduction effect can also be found for other track forms where the axle impulses are distributed on a longer track segment, for example slab tracks, tracks with under ballast plates, under ballast mats or under sleeper pads. T2 - 29th International Congress on Sound and Vibration CY - Prague, Czech Republic DA - 09.07.2023 KW - Ground vibration KW - Railway tunnel KW - Layered soil KW - Surface-tunnel reduction KW - Measurements PY - 2023 SP - 1 EP - 8 PB - IIAV CY - Auburn, USA AN - OPUS4-57962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -