TY - CONF A1 - Auersch, Lutz T1 - Railway vibration – fast physics-based models for the prediction of ground vibration and the identification of track damage N2 - The following applications of machine learning will be discussed: 1. The prediction of the wave propagation from a railway line (completely physics based for surface lines, physics-based machine learning for tunnel lines) 2. The track behaviour for the emission of train-induced ground vibration (physics based for homogeneous soil, machine learning for layered soil) 3. Track damage detection and quantification from frequency response functions and moving load responses 4. Bridge damage detection and localisation from modal analysis and moving load 5. The use of axle-box acceleration for the identification of track/sub-soil condition and bridge resonances. The prediction of railway vibration usually needs time-consuming finite element, boundary element and wavenumber domain calculations. For a user-friendly prediction software however, fast calculations are needed. Several time-consuming detailed calculations have been used to develop simpler and fast models for the surface railway lines. The more challenging prediction from tunnel lines will be attacked by purely mathematical and by physics-informed machine learning. The dynamic stiffnesses of isolated or un-isolated railway tracks from detailed calculations with a continuous soil have been approximated with the simpler Winkler soil. The vehicle-track resonance (P2 resonance) rules the effect of the mitigation measures, and it can also be used for the on-board monitoring of the track and sub-soil condition. For the identification of track damage such as gaps between sleepers, track slabs and layers, detailed models with a continuous soil have been updated to get the best fit to the measured frequency response functions from hammer tests and the deformation pattern from the moving load response. Whereas the track damage can be locally identified, this is more difficult for bridges where the modal analysis gives mainly global information. The influence lines of the inclination for statically passing vehicles (locomotive, truck, compaction roller) have been used to localise bridge damage (stiffness variations). The on-board monitoring of rail bridges needs special conditions (regular trains with special speeds) to excite and measure the bridge resonance. T2 - 11th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam, Germany DA - 10.06.2024 KW - Vibration prediction KW - Track damage detection KW - Human and machine learning KW - Wave propagation KW - Surface line KW - Tunnel KW - Bridge resonance PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612462 DO - https://doi.org/10.58286/29865 SN - 1435-4934 SP - 1 EP - 9 PB - NDT.net CY - Kirchwald AN - OPUS4-61246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz ED - Papadrakakis, Manolis T1 - Frequency-wavenumber method for the wave propagation through the soil and the soil-structure interaction of railway tracks and building foundations near railway lines N2 - In soil-structure interaction, the soil and the (flexible) structures are modelled as elastic continua. The partial differential equations of elasticity can be transformed to algebraic equations in frequency-wavenumber domain where they can be solved by matrix methods. The results for the soil and a structure can be coupled in frequency-wavenumber domain, and the solution in space domain is obtained by an infinite wavenumber integral (the back-transformation). This method has several applications for the prediction of the emission, transmission and immission of railway-induced vibrations. The wave propagation in homogeneous or layered soils is calculated for surface and tunnel lines by a single wavenumber integration (transmission). The response of ballast or slab tracks (for the emission problem) and the foundation stiffness (for the immission problem) need an additional integration across the track or foundation width. In wavenumber domain, tracks and foundations of infinite length are analysed. Finite structures can be calculated by finite element models where the soil is calculated by the boundary element method. The Green’s functions for the boundary element method are calculated by a wavenumber integration as for the transmission problem. Some example results for all these tasks will be shown. The immission into buildings will be analysed in detail, and the effect of stiff slab foundations and (basement) walls on the incoming wavefield is quantified in a parameter study. The transfer function (the amplitude ratio) structure to free field usually starts with 1 at 0 Hz and decreases continuously with frequency. The reduction is due to the structural stiffness against wave deformation which turns to be higher than the stiffness of the soil, for example above the structure-soil coincidence frequency of the slab foundation. The reduction is better for a high structural stiffness and for a low soil stiffness. Walls are stiffer than plates for the relevant frequency range, but even walls and especially low basement walls are not infinitely rigid and can follow the wave deformation to a certain extent. These basic rules from frequency-wavenumber analysis can well be used for real building projects near railway lines where stiff foundations can be an alternative reduction method to the commonly used base isolation by elastic elements. T2 - COMPDYN 2025 CY - Rhodos, Greece DA - 15.06.2025 KW - Frequency-wavenumber method KW - Wave propagation KW - Soil-structure interaction KW - Building foundations KW - Mitigation measures PY - 2025 SP - 1 EP - 15 PB - NTUA CY - Athen AN - OPUS4-63470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Frequency-wavenumber method for the wave propagation through the soil and the soil-structure interaction of railway tracks and building foundations near railway lines N2 - In soil-structure interaction, the soil and the (flexible) structures are modelled as elastic continua. The partial differential equations of elasticity can be transformed to algebraic equations in frequency-wavenumber domain where they can be solved by matrix methods. The results for the soil and a structure can be coupled in frequency-wavenumber domain, and the solution in space domain is obtained by an infinite wavenumber integral (the back-transformation). This method has several applications for the prediction of the emission, transmission and immission of railway-induced vibrations. The wave propagation in homogeneous or layered soils is calculated for surface and tunnel lines by a single wavenumber integration (transmission). The response of ballast or slab tracks (for the emission problem) and the foundation stiffness (for the immission problem) need an additional integration across the track or foundation width. In wavenumber domain, tracks and foundations of infinite length are analysed. Finite structures can be calculated by finite element models where the soil is calculated by the boundary element method. The Green’s functions for the boundary element method are calculated by a wavenumber integration as for the transmission problem. Some example results for all these tasks will be shown. The immission into buildings will be analysed in detail, and the effect of stiff slab foundations and (basement) walls on the incoming wavefield is quantified in a parameter study. The transfer function (the amplitude ratio) structure to free field usually starts with 1 at 0 Hz and decreases continuously with frequency. The reduction is due to the structural stiffness against wave deformation which turns to be higher than the stiffness of the soil, for example above the structure-soil coincidence frequency of the slab foundation. The reduction is better for a high structural stiffness and for a low soil stiffness. Walls are stiffer than plates for the relevant frequency range, but even walls and especially low basement walls are not infinitely rigid and can follow the wave deformation to a certain extent. These basic rules from frequency-wavenumber analysis can well be used for real building projects near railway lines where stiff foundations can be an alternative reduction method to the commonly used base isolation by elastic elements. T2 - COMPDYN 2025 CY - Rhodos, Greece DA - 15.06.2025 KW - Frequency-wavenumber method KW - Wave propagation KW - Soil-structure interaction KW - Building foundations KW - Mitigation measures PY - 2025 AN - OPUS4-63468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Prediction of ground vibrations from rail tunnels finite element, boundary element and wavenumber calculations N2 - The prediction of ground and building vibrations has been established for surface lines and has now been extended to tunnel lines. The wave propagation in homogeneous or layered soils (the transmission) is calculated by an integration in wavenumber domain. The wave amplitudes at different distances and for different frequencies will be analysed for the following situations. 1. The horizontal propagation from a surface point to a surface point constitutes the basic rules. 2. The horizontal propagation from a source point at depth to a receiver point at depth which is related to a building with a deep basement or on a pile foundation. 3. The propagation from depth to the surface, which is the normal case for free-field measurements, has some different characteristics, for example a weaker attenuation with the horizontal distance from the source, which can be approximated by the full-space solution and the reflection rules for incident waves. The emission from a tunnel structure has been calculated by a finite-element model of the tunnel combined with a boundary-element model of the soil giving the reduction compared to a point-load excitation. The immission has been analysed by finite-element models of tunnel-soil-building systems for examples of research and consultancy work. Measurement results from a high-speed and a metro line confirm some of the established rules. T2 - Recent Advance in Structural Dynamics (RASD) CY - Southampton, UK DA - 01.07.2024 KW - Ground vibration KW - Building vibration KW - Railway tunnel KW - Wavenumber method KW - Finite element method KW - Boundary element method PY - 2024 AN - OPUS4-61230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Railway-induced ground and building vibrations – Analysis in frequency-wavenumber domain and fast prediction with approximate models N2 - A simple and fast prediction scheme is presented for train-induced ground and building vibrations. For the emission, finite-element boundary-element or multiple-beam-on-continuous-soil models of the track have been analysed and approximated by faster track-on-Winkler-soil models. The vehicle-track interaction due to irregularities yields the excitation forces. For the transmission of waves in the soil, the wavenumber integral of the compliance of layered soils has been evaluated. The calculation time is reduced for the prediction by using the solution of a homogeneous half-space with a frequency-dependent wave velocity (the dispersion) of the soil. For the immision, many 2 and 3-dimenisonal finite-element building models have been investigated, and a good approximation has been established by a 1-dimensional soil-wall-floor model. In addition, the axle sequence of the train, the quasi-static and the “scattered” response of the soil, and the wave propagation from a tunnel to a pile foundation of a building have been included. T2 - ISMA-Conference 2022 CY - Leuven, Belgium DA - 12.09.2022 KW - Ground vibration KW - Simple prediction KW - Vehicle-track interaction KW - Layered soil KW - Soil-building interaction KW - Soil-wall-floor model KW - Propagation from a tunnel KW - Tunnel-pile transfer PY - 2022 SP - 1 EP - 13 PB - KU Leuven CY - Leuven AN - OPUS4-56603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Auersch, Lutz T1 - Mitigation measures for slab tracks - wide sleepers on soft pads and different slabs - Results from the finite element boundary element method N2 - The ground vibrations, which are generated by trains on different slab tracks, have been calculated by finite-element boundary-element models. The slab track is modelled in detail by the finite element method. The infinite soil is modelled by the boundary element method as a homogeneous half-space. The track-soil system is coupled with a simple rigid mass model of the vehicle so that the vehicle-track interaction is completely included. Transfer functions are calculated in frequency domain without and with vehicle-track interaction, the compliance of the track and the mobilities of the soil at different distances from the track. Finally, the ratios between the ground vibration amplitudes with and without mitigation measure are calculated to quantify the effectiveness of the mitigation measure. Tracks with under sleeper pads have been investigated in a parameter study. The main parameter that influences the reduction of ground vibration is the stiffness of the under sleeper pad. The softest sleeper pad yields the best reduction of the ground vibration. The influence of other parameters has been examined. The stiffness of the rail pads, the stiffness of the slab material, the stiffness of the sleeper material, and the distance of the sleepers. All these parameters show no or only a minor influence on the mitigation effect. As the standard isolated track, a track with an under sleeper pad of a stiffness of kS = 5 107 N/m has been chosen, which can also be expressed as a stiffness per area of kS ’’ = 3.7 107 N/m3 = 0.037 N/mm3. The resonance frequency for this pad stiffness is observed between 32 and 40 Hz. The reduction of the ground vibration is about vi,I /vi,U = 0.1 at 100 Hz. KW - Wide sleeper KW - Under sleeper pad KW - Finite-element boudnary-element method KW - Slab track KW - Mitigation KW - Ground vibration PY - 2012 SP - 1 EP - 50 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-56608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Rohrmann, R. T1 - Measurement and evaluation tools for ground and building vibrations from industrial pro-cesses, construction work, traffic and other sources N2 - Vibration measurements have many causes and many technical and natural sources. Problems can sometimes be solved by short-term measurements, but in many cases, a long-term measurement is necessary. In long-term measurements of days, weeks, months and even years, it is easy to collect a huge quantity of raw data, but at the end, the post-processing of these data can be exhausting (for example one-year vibration data of a wind energy tower). A software has been developed which con-sists of measuring and evaluation routines where the measuring routines can operate different meas-uring systems and different measuring cards. The main advantage of this software is the fact that the interesting evaluations can be integrated in the measuring process so that the characteristics of the vibration can be extracted without storing all the raw data. Only important time segments are stored, for example train passages. The overall concept of the software and the main evaluation routines will be described in some details. Examples of our measurement experience will illustrate the capabilities of the software. 1) Surveying construction work in nearby sensitive buildings (for example an old wind tunnel), including a stable alarm system and meaningful vibration limits. 2) Prediction of train-induced vibration for a planned building to prevent annoyance and to improve the building design. 3) Modal analysis and long term measurements of several single- or multi-span, concrete or steel bridges 4) Modal and wave analysis of coupled floors in a historical building (“Neues Palais” at Potsdam). 5) Soil properties of various measurement sites (different routines to evaluate the dispersion). Moreover, from many projects, amplitudes, frequencies, and attenuation laws have been collected and analysed for the different sources such as vibratory or impact pile driving and ground compaction, demolition work with different machines, blasting in quarries and in tunnel works, bomb and mine clearing. T2 - 28th International Congress on Sound and Vibration CY - Online meeting DA - 24.07.2022 KW - Ground vibration KW - Building vibration KW - Measurement KW - Evaluation KW - Modes KW - Waves PY - 2022 SP - 1 EP - 8 AN - OPUS4-56602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Effects of a varying track and soil stiffness on ground vibrations near railway lines N2 - Usually, geometric irregularities are considered as the main cause of ground vibrations from trains. A varying stiffness of the track, the track support and the soil can also generate ground vibrations. The regular stiffness variation of the track on and between the sleepers results in a deterministic dynamic axle load. The random stiffness variation of the track support yields also dynamic axle loads which are generated by the acceleration of the unsprung mass (from the varying wheel displacements under the static axle load). The random stiffness variation has a second effect. The pulses from the passage of the static axle loads are superposed regularly to the quasi-static response, but also irregularly to yield a “scattered” part of the axle pulses. The same holds for a random variation of the soil stiffness. All these effects of stiffness variations have been calculated by wavenumber-domain multi-beam track models, a random finite-element soil model and the superposition of axle impulses in a stochastic simulation. The results are confronted with many measurements at different sites. It is concluded that the stiffness variation of the track and the soil generate an important ground vibration component near railway lines. T2 - International Conference Railways 2022 CY - Montpellier, France DA - 22.08.2022 KW - Ground vibration KW - Axle loads KW - Irregularities KW - Varying stiffness PY - 2022 SP - 1 EP - 11 AN - OPUS4-56605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - The dynamic train-track interaction on a bridge and in a tunnel compared with the simultaneous vehicle, track, and ground vibration measurements at a surface line N2 - The vehicle–track interaction generates forces and consequently vibrations in the environment. The interaction has been analysed by the simultaneous measurements of vehicle, track and ground vibrations during test runs with varied train speeds. The special effects of the passage over a bridge and through a tunnel are studied and compared with the measurements on a conventional ballasted surface line. The maximum amplitudes, narrow band and one-third octave band spectra are presented for the axle-box accelerations and for the track, bridge and ground vibrations. The different frequencies and frequency bands are related to wheel out-of-roundness, track alignment errors, the sleeper passage and the wheelset–track resonance. An axle impulse component has been observed at the track, at the near-field soil and as a scattered version in the far field. Specific results can be found for the bridge track, where clearly speed-dependent bridge resonances occur due to the axle sequence of the train, and for the tunnel track where soft rail pads are responsible for a strong amplification around the wheelset–track resonance. On the other hand, the axle impulses are strongly reduced by the tunnel track, and the scattered axle impulse component is not as relevant as for the surface track. As a consequence, a strong mid-frequency amplitude reduction of the tunnel compared to the surface line has been measured for low and high train speeds by the Federal Institute of Material Research and Testing (BAM) and by other institutes. KW - Vehicle–track interaction KW - Ground vibration KW - Tunnel-to-surface reduction KW - Bridge resonance KW - Axle sequence PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585139 DO - https://doi.org/10.3390/app131910992 VL - 13 IS - 19 SP - 1 EP - 23 PB - MDPI CY - Basel, Schweiz AN - OPUS4-58513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Soil–structure interaction and damping by the soil - effects of foundation groups, foundation flexibility, soil stiffness and layers N2 - In many tasks of railway vibration, the structure, that is, the track, a bridge, and a nearby building and its floors, is coupled to the soil, and the soil–structure interaction and the damping by the soil should be included in the analysis to obtain realistic resonance frequencies and amplitudes. The stiffness and damping of a variety of foundations is calculated by an indirect boundary element method which uses fundamental solutions, is meshless, uses collocation points on the boundary, and solves the singularity by an appropriate averaging over a part of the surface. The boundary element method is coupled with the finite element method in the case of flexible foundations such as beams, plates, piles, and railway tracks. The results, the frequency-dependent stiffness and damping of single and groups of rigid foundations on homogeneous and layered soil and the amplitude and phase of the dynamic compliance of flexible foundations, show that the simple constant stiffness and damping values of a rigid footing on homogeneous soil are often misleading and do not represent well the reality. The damping may be higher in some special cases, but, in most cases, the damping is lower than expected fromthe simple theory. Some applications and measurements demonstrate the importance of the correct damping by the soil. KW - Soil–structure interaction KW - Soil dynamics KW - Radiation damping of the soil KW - Rigid foundation KW - Flexible foundation KW - Foundation groups KW - Boundary element method KW - Vibration measurement PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-627007 DO - https://doi.org/10.3390/vibration8010005 SN - 2571-631X VL - 8 IS - 5 SP - 1 EP - 28 PB - MDPI CY - Basel, Schweiz AN - OPUS4-62700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -