TY - CONF A1 - Auersch, Lutz T1 - Four typical errors in train induced ground vibration and ground vibration mitigation N2 - Mitigation measures of railway induced vibration have been demonstrated at the emission, transmission and immission part. It must be carefully observed that the correct masses and stiffnesses are used. Typical mistakes have been shown, - 1D models for vehicle-track interaction, - impedance instead of stiffness for the infill material of a trench, - rigid buildings or neglecting the soil-building interaction. The dominant mid-frequency part of the ground vibration is due to the irregular soil. T2 - ISO/TC 108/SC 2/WG 8 Working group Ground-borne noise and vibration from rail systems CY - Milano, Italy DA - 14.10.2019 KW - Ground vibration KW - Train excitation KW - Mitigation PY - 2019 AN - OPUS4-49446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Ziemens, Susanne T1 - The response of different buildings to free-field excitation – a study using detailed finite element models N2 - A study on building vibrations has been performed by finite element calculations. Family houses, multi-storey residential buildings, office buildings and office towers have been modelled in detail. The frequency-dependent response due to a free-field excitation has been evaluated for walls, columns and floors. The ratio of building amplitudes to free-field amplitudes starts with uB/u0 = 1 at zero frequency and is usually lower than 1 at 50 Hz, the end of the frequency range considered here. In between, amplifications occur due to several reasons. There are „soil resonances“ where the whole building is vibrating on the compliant soil, “column resonances” where the upper storeys are vibrating on the compliant columns, and the “floor resonances” where the floors are vibrating excited by their supports. Results are presented for all building types, but a special focus is set on office buildings. A parameter study shows the influence of the stiffness of the soil, the number of storeys, and the width of the building. It has been found that the “soil resonance” is strongly modified by the low-frequency floor resonances for the normal office building. The main resonance of a twenty-storey office tower is determined equally by the “soil mode” and the “column mode”. It is an important observation for these office buildings that the resonances can differ for different parts of the building such as the centre, the edge, the corner, and the core of the building. This leads to non-uniform vibration modes across the building, which look like another type of “floor resonance” and which have been observed in several real building projects. Experimental results will be shown which can confirm the calculated phenomena. T2 - EURODYN 2020 XI International Conference on Structural Dynamics CY - Online meeting DA - 13.11.2020 KW - Building vibration KW - Office building KW - Residential building KW - Soil-building resonance KW - Floor resonance KW - Column/wall resonance PY - 2020 SN - 978-618-85072-2-7 SP - 4560 EP - 4576 CY - Athen AN - OPUS4-51678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Ziemens, Susanne T1 - The response of different buildings to free-field excitation – a study using detailed finite element models N2 - A study on building vibrations has been performed by finite element calculations. Family houses, multi-storey residential buildings, office buildings and office towers have been modelled in detail. The frequency-dependent response due to a free-field excitation has been evaluated for walls, columns and floors. The ratio of building amplitudes to free-field amplitudes starts with uB/u0 = 1 at zero frequency and is usually lower than 1 at 50 Hz, the end of the frequency range considered here. In between, amplifications occur due to several reasons. There are „soil resonances“ where the whole building is vibrating on the compliant soil, “column resonances” where the upper storeys are vibrating on the compliant columns, and the “floor resonances” where the floors are vibrating excited by their supports. Results are presented for all building types, but a special focus is set on office buildings. A parameter study shows the influence of the stiffness of the soil, the number of storeys, and the width of the building. It has been found that the “soil resonance” is strongly modified by the low-frequency floor resonances for the normal office building. The main resonance of a twenty-storey office tower is determined equally by the “soil mode” and the “column mode”. It is an important observation for these office buildings that the resonances can differ for different parts of the building such as the centre, the edge, the corner, and the core of the building. This leads to non-uniform vibration modes across the building, which look like another type of “floor resonance” and which have been observed in several real building projects. Experimental results will be shown which can confirm the calculated phenomena. T2 - EURODYN 2020 XI International Conference on Structural Dynamics CY - Online meeting DA - 23.11.2020 KW - Building vibration PY - 2020 AN - OPUS4-51679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Dynamic track-soil interaction – calculations and measurements about slab and ballast tracks N2 - The dynamic behaviour of slab and ballast tracks has been investigated by measurements and calculations. Hammer impacts and train passages have been analysed. Measurements have been performed by geophones (velocity transducers) which have been time-integrated to displacements. The calculations are done in frequency-wavenumber domain for multi-beam-on-continuous soil models. The characteristics of the different tracks and track elements have been established in theory and experiment. The frequency-dependent compliances (displacement transfer functions) show clear rail-on-rail-pad resonances or highly damped track-soil resonances. Compared to the rail and sleeper, the track plate has much lower amplitudes. The slab track has usually the highest rail amplitudes due to soft rail pads. The train passage yields track displacements which are a superposition of the axle loads from the two neighbouring axles of a bogie and from the two bogies of two neighbouring carriages. This global behaviour is characteristic for the track plate of the slab track whereas the rails of the slab and the ballast track behave more local with only one bogie of influence. The measurements agree very well with the theory of the continuous soil in case of the six measured slab tracks and acceptably well for the six measured ballast tracks. The measurements allow to find appropriate model parameters and to check the models, for example the Winkler model of the soil has been found less appropriate as it reacts more locally. KW - Slab track KW - Ballast track KW - Train passage KW - Hammer impact KW - Track-soil interaction PY - 2021 DO - https://doi.org/10.1631/jzus.A1900651 SN - 1673-565X VL - 22 IS - 1 SP - 21 EP - 36 PB - Zhejiang University Press CY - Hangzhou AN - OPUS4-52107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Train-induced ground vibration due to the irregularities of the soil N2 - Many measurements of train induced ground vibrations show high amplitudes for a certain mid-frequency range. This ground vibration component cannot be well explained by dynamic loads of the train. Many characteristics indicate that the axle impulses, which are scattered by an irregular soil, are the excitation. This new understanding of railway-induced ground vibration is verified by numerical analysis. The response of the regular homogeneous and irregular inhomogeneous soils has been calculated by the finite-element method in frequency domain. A specific superposition of the impulse responses has been invented including time shift, axle sequence, track filter and hanning filter. The superposition yields the quasi-static component of the ground vibration which is restricted to very low frequencies and to the close near-field of the track. In case of an irregular soil of which the stiffness varies randomly in space, the superposition yields a mid-frequency ground vibration component from the scattering of the axle impulses. The existence and the importance of this component can thus be demonstrated by the calculations. Some rules of the influence of distance, train speed, soil stiffness, strength and width of the stiffness variation have been derived from the calculations. Many measurements show the unique explanation of the mid-frequency ground vibration component by the scattered axle impulses. KW - Train-induced ground vibration KW - Static axle loads KW - Quasi-static response; KW - Axle impulses KW - Irregular soil KW - Random stiffness variation KW - Scattered axle impulses PY - 2021 DO - https://doi.org/10.1016/j.soildyn.2020.106438 SN - 0267-7261 VL - 140 SP - 106438 PB - Elsevier Ltd. CY - London AN - OPUS4-52006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Emission of train-induced ground vibration — Prediction of axle-load spectra and its experimental verification N2 - Train passages induce forces on the track, train-induced vibrations propagate through the soil and excite neighbouring buildings. The emission, which is the first part of the prediction of vibrations near railway lines, is presented by focusing on the dynamic axle loads. The calculation of the axle loads is based on the vehicle-track-soil interaction. This interaction calculus utilises the dynamic stiffness of the vehicle (the inertia of the wheelset) and the dynamic stiffness of the track-soil system. Based on various time consuming finite-element boundary-element calculations, an approximate track-soil model has been established. The vehicle-track-soil analysis yields several transfer functions between the various geometric or stiffness irregularities and the axle loads of the train. Geometric irregularities of the vehicle (the wheels) and the track (rail surface and track alignment) are the simplest components. Geometric irregularities of the subsoil (trackbed irregularities) have to be transferred to effective irregularities at rail level. The bending stiffness of the track is filtering out the short-wavelength contribution. Stiffness irregularities occur due to random variations in the ballast or the subsoil, which must also be transferred to effective track irregularities, and due to the discrete rail support on sleepers. All necessary transfer functions for the prediction of axle-load spectra are presented as general formula and as specific graphs for differing vehicle and track parameters. The prediction method is applied to a ballast track and a slab track and compared with corresponding axle-box measurements. Moreover, ground vibration measurements at numerous sites are exploited for the axle-load spectra and the validation of the prediction method. All theoretical and experimental results confirm that the dynamic axle-load spectra have an approximate value of 1 kN per third of octave and increase with train speed, track stiffness and around the vehicle-track resonance. KW - Train induced ground vibration KW - Prediction KW - Emission KW - Axle-load spectra KW - Experimental verification PY - 2017 DO - https://doi.org/10.20855/ijav.2017.22.1453 SN - 1027-5851 VL - 22 IS - 1 SP - 74 EP - 83 PB - Institute of Acoustics and Vibration CY - Auburn, USA AN - OPUS4-39445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Vehicle-track interaction and soil dynamics N2 - The dynamic compliance of different railway tracks on different layered soils have been calculated using a combined finite-element and boundary-element method: conventional track on homogeneous soil with different stiffness, extreme normal and inverse layering of the soil, plates in and on top of the soil (slab track on various soils), conventional track with elastic rail pads. T2 - IAVSD (Vehicle System Dynamics) CY - Budapest, Hungary DA - 25.8.1997 KW - Railway track KW - Layered soil KW - Vehicle-track interaction PY - 1997 AN - OPUS4-47106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Ground vibration due to railway traffic - the calculation of the effects of moving static loads and their experimental verification N2 - The regular static Response is important at low frequencies and near-field. The regular dynamic response due to sleeper passage is more important at high frequencies. The irregulär static response due to randomly varying soil properties is more important at medium frequencies and at far-field. T2 - 8th Workshop on Railway Noise and Vibration CY - Buxton, UK DA - 08.09.2004 KW - Static railway loads KW - Ground vibration KW - Sleeper passage KW - Axle-sequence PY - 2004 AN - OPUS4-47090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Track-soil dynamics – calculation and measurement of damaged and repaired slab tracks N2 - The damage detection and repair control have become important tasks for ballast and slab tracks. Measurements which compare the damaged and the repaired status of the same track section at different times, or which compare a damaged and an intact track section at the same time, have been successfully performed at some sites in Germany. The loss of contact between the sleeper and the track plate, between the track plate and the base plate, and between the base plate and the base layer have been analysed. The soil properties of each site have been measured and have been used to establish realistic track-soil models. Theoretical results of the wavenumber domain and the finite-element boundary element method have been compared with the experimental results. The observed experimental and theoretical results, changes in the time histories of displacements and velocities due to train passages and in the transfer functions (receptances) due to hammer impacts, are encouraging that these measurements can be used to detect track damage. KW - Railway track KW - Slab track KW - Track-soil interaction KW - Field tests KW - Track damage KW - Monitoring KW - Finite element method KW - Boundary element method PY - 2017 DO - https://doi.org/10.1016/j.trgeo.2017.06.003 SN - 2214-3912 VL - 12 IS - September SP - 1 EP - 14 PB - Elsevier CY - London AN - OPUS4-42581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Markfort, Greta T1 - Static and dynamic behaviour of pile foundations in homogeneous and inhomogeneous soils N2 - Offshore wind energy towers are dynamically loaded by waves and wind. Pile foundations provide stiffness and damping and should be properly calculated. A combined finite-element boundary-element method for the dynamic interaction of flexible structures and the soil has been developed. The flexible structures such as single piles or complete wind energy towers are modeled by the finite element method whereas the homogeneous or layered soil is modeled by the boundary element method which uses the Green’s functions for interior loads in the layered half-space to establish the dynamic stiffness matrix of the soil. Soils with a stiffness that is continuously increasing with depth can be modeled as multi-layer soils with step-wise increasing stiffness. The effects of different parameters such as the stiffness of the soil, the axial and bending stiffness of the pile, and the radius of the cylindrical contact area will be analysed for the different components of excitation (vertical, horizontal, rotation and coupling). The results can be determined as specific power laws which are different for the different load cases and for the different soil models (Winkler support, homogeneous continuum, continuum with increasing stiffness). The dynamic effect of radiation damping will be analysed by the frequency-dependent compliance functions. A clear layering of the soil can cause noticeable changes in the dynamic compliances as reductions of the stiffness and the damping in certain frequency ranges (below and around layer resonance frequencies). The distribution of the displacements along the pile help to explain the observed laws. An example of an offshore wind energy tower has been modeled and calculated for wind, wave and weight loads. The resonances of the tower are usually limited by the radiation damping which is strongest for a soft soil. T2 - Compdyn 2017 CY - Rhodes, Greece DA - 15.06.2017 KW - Pile foundation KW - Finite-element boundary-element method KW - Pile bending stiffness KW - Soil stiffness KW - Continuously inhomogeneous soils KW - Layered soils KW - Wind energy tower PY - 2017 AN - OPUS4-42486 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -