TY - JOUR A1 - Auersch, Lutz T1 - Ground vibration due to railway traffic - The calculation of the effects of moving static loads and their experimental verification N2 - The propagation of waves through homogeneous or layered soil is calculated based on half-space theory. The moving dynamic loads of a train are approximated by fixed dynamic loads and the wave field can be calculated if the spectrum of the dynamic train loads is known. In addition to this dynamic wave field, there are three different components at three different frequency ranges which are caused by the passage of the static loads: • the regular static component at low frequencies, • the irregular static component at medium frequencies, • the sleeper-passing component at high frequencies. For each of these components, an approximate solution is presented. The calculated wave field is compared with measurements of different trains at different sites. The measurement of impulse and harmonic point load excitation verifies the soil dynamic base of the method. PY - 2006 DO - https://doi.org/10.1016/j.jsv.2005.08.059 SN - 0022-460X SN - 1095-8568 VL - 293 IS - 3-5 SP - 599 EP - 610 PB - Academic Press CY - London AN - OPUS4-14049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Simple and advanced boundary-element method for the soil and its application to railway dynamics T2 - COMPDYN 2007, Computional Methods in Structural Dynamics and Earthquake Engineering CY - Rethymno, Greece DA - 2007-06-13 PY - 2007 AN - OPUS4-15003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz ED - M. Papadrakakis, ED - D.C. Charmpis, ED - N.D. Lagaros, ED - Tsompanakis, Y. T1 - Simple and advanced boundary-element method for the soil and its application to railway dynamics T2 - COMPDYN 2007 CY - Rethymno, Crete, Greece DA - 2007-06-13 KW - Finite-element boundary-element method KW - Explicit Green´s functions KW - Track vibration KW - Tunnel vibration KW - Vehicle-track-soil interaction KW - Radiation damping PY - 2007 SP - 1 EP - 12 CY - Athen AN - OPUS4-15015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - The influence of the soil on track dynamics and ground-borne vibration T2 - 9th International Workshop on Railway Noise (IWRN) CY - Munich, Germany DA - 2007-09-04 PY - 2007 SP - S.4.1, 1 EP - 9 PB - International Workshop on Railway Noise CY - München AN - OPUS4-16438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz ED - Papadrakakis, M. ED - Fragiadakis, M. ED - Plevris, V. T1 - High-speed railway tracks of a surface, bridge and tunnel line and some effects on the train-induced bridge and ground vibrations T2 - COMPDYN 2011 - 3rd International thematic conference - Computational methods in structural dynamics and earthquake engineering CY - Corfu, Greece DA - 2011-05-25 KW - Track compliance KW - Surface line KW - Bridge track KW - Tunnel track KW - Ground vibration KW - Layered soil KW - Bridge resonance KW - Train speed KW - Axle sequence KW - Track irregularities PY - 2011 SP - 1 EP - 17(?) AN - OPUS4-24555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz ED - De Roeck, G. ED - Degrande, G. ED - Lombaert, G. ED - Müller, G. T1 - The dynamic force transfer of slab tracks and floating slab tracks and the corresponding ground vibration T2 - EURODYN 2011 - 8th International conference on structural dynamics CY - Leuven, Belgium DA - 2011-07-04 KW - Railway track KW - Slab track KW - Floating slab track KW - Track-soil interaction KW - Force transfer KW - Ground vibration PY - 2011 SN - 978-90-760-1931-4 SP - 820 EP - 827 AN - OPUS4-24556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir ED - Zhai, W. ED - Takemiya, H. ED - De Roeck, G. ED - Tutumluer, E. T1 - Experimental soil parameters by different evaluation methods for impulsive, train and ambient excitation T2 - ISEV 2011 - 5th International symposium on environmental vibration - Advances in environmental vibration CY - Chengdu, China DA - 2011-10-20 KW - Wave velocity KW - Dispersion KW - SASW KW - MASW KW - SPAC KW - Damping PY - 2011 SN - 978-7-03-032373-6 SP - 3 EP - 9 PB - Science Press AN - OPUS4-24807 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz ED - Náprstek, J. ED - Horácek, J. ED - Okrouhlík, M. ED - Marvalová, B. ED - Verhulst, F. ED - Sawicki, J.T. T1 - Reducing ground-borne micro-vibrations by plate foundations T2 - Vibration problems ICOVP 2011 - 10th international conference on vibration problems CY - Prague, Czech Republic DA - 2011-09-05 KW - Plate-soil interaction KW - Wave excitation KW - Vibration reduction KW - Finite-element boundary-element method PY - 2011 SN - 978-94-007-2068-8 SN - 0930-8989 N1 - Serientitel: Springer proceedings in physics – Series title: Springer proceedings in physics VL - 139 SP - 329 EP - 335 PB - Springer AN - OPUS4-24804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Dynamic behavior of slab tracks on homogeneous and layered soils and the reduction of ground vibration by floating slab tracks N2 - The dynamics of slab tracks and floating slab tracks are analyzed by multibeam models for the track and by integration in the wave-number domain for the soil, which is modeled as a layered half-space. Frequency-dependent compliances and force transfers are calculated for a great variety of track and soil parameters. The distribution of the load and the displacements along the track is investigated as well as the wave propagation perpendicular to the track and the ground vibration amplitudes. The floating slab track has a dominating plate-mat resonance and a strong high-frequency reduction. A track-soil resonance can also be recognized for an unisolated slab track in the case of layered soils. Generally, there is a strong damping of the track by the soil. The reduction effect of the slab mat is mainly owing to the elimination of this strong damping. The continuous soil yields slightly different rules for the displacements and force densities than those of a Winkler support. The total force transfer from the rail to the soil is the best criterion to judge the effectiveness of a floating slab track in reducing the ground vibration at some distance from the railway line. The total force transfer is easier to calculate than the double Fourier integrals of the ground vibration amplitudes, namely in the far field, and it has the best correlation with the reduction of the ground vibration. KW - Railway track KW - Slab track KW - Floating slab track KW - Track-soil interaction KW - Track vibration KW - Ground vibration KW - Force transfer PY - 2012 DO - https://doi.org/10.1061/(ASCE)EM.1943-7889.0000407 SN - 0733-9399 SN - 1943-7889 VL - 138 IS - 8 SP - 923 EP - 933 PB - Soc. CY - New York, NY, USA AN - OPUS4-26860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Response to harmonic wave excitation of finite or infinite elastic plates on a homogeneous or layered half-space N2 - The soil–structure interaction of elastic plates on homogeneous or layered soils excited by horizontally propagating waves is analysed. Large plates are modelled by a combined finite-element boundary-element method (FEBEM), whereas the response of infinitely long plates is calculated by a numerical integration in the frequency–wavenumber domain. The finite-element boundary-element method yields the complete soil–plate transfer function of frequency and distance whereas the frequency–wavenumber solution of the infinitely long plate can serve as an approximation for long distances on a finitely long plate. The soil–plate transfer function starts to decrease strongly at the coincidence frequency, where the bending stiffness equals the plate inertia. A strong decrease follows at mid frequencies and a strong reduction of less than 0.1 of the ground vibration is reached at high frequencies. Rules for the characteristic frequencies are derived from the numerical results clearly indicating the strongest influence of the soil stiffness and the weaker influence of the bending stiffness of the plate. The influence of the mass, length and width of the plate are shown to be limited in case of realistic parameters, but it should be noted that the reduction effects are less effective for layered soils and for nearer observation points. KW - Plate-soil interaction KW - Wave excitation KW - Flexible plate KW - Layered soil KW - Vibration reduction KW - Finite-element boundary-element method KW - Frequency-wavenumber method PY - 2013 DO - https://doi.org/10.1016/j.compgeo.2013.02.001 SN - 0266-352x VL - 51 SP - 50 EP - 59 PB - Elsevier Appl. Sci. Publ. CY - Barking AN - OPUS4-27983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -