TY - CONF A1 - Auersch, Lutz A1 - Said, Samir T1 - Simple modal analysis and wave propagation for practical floor experiments in new and old office and residential buildings T2 - EVACES'07 - Experimental vibration analysis for civil engineering structures CY - Porto, Portugal DA - 2007-10-24 PY - 2007 SN - 978-972-752-095-4 SP - 423 EP - 432 AN - OPUS4-18409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - The influence of the soil on track dynamics and ground-borne vibration T2 - 9th International Workshop on Railway Noise (IWRN) CY - Munich, Germany DA - 2007-09-04 PY - 2007 SP - S.4.1, 1 EP - 9 PB - International Workshop on Railway Noise CY - München AN - OPUS4-16438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rücker, Werner A1 - Auersch, Lutz T1 - A user-friendly prediction tool for railway induced ground vibrations: Emission - transmission - immission T2 - 9th IWRN - International Workshop on Railway Noise CY - Munich, Germany DA - 2007-09-04 PY - 2007 SP - S.4.2, 1 EP - 6 PB - International Workshop on Railway Noise CY - München AN - OPUS4-18592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz ED - Papadrakakis, M. ED - Papadopoulos, V. ED - Plevris, V. T1 - How to quantify the vibration reduction of railway tracks T2 - COMPDYN 2013 - 4th ECCOMAS Thematic conference on computational methods in structural dynamics and earthquake engineering CY - Kos Island, Greece DA - 2013-06-12 KW - Railway induced ground vibration KW - Mitigation measures KW - Railway tracks KW - Finite-element boundary-element method KW - Wavenumber integrals KW - 1-D insertion loss PY - 2013 SP - 1 EP - 19 AN - OPUS4-29313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Train induced vibration of inhomogeneous soils - a prediction based on measured and calculated point-load solutions N2 - Vehicle, track and ground vibration as well as their interaction are considered in a combined finite-element boundary-element (FEBEM) approach. The layered soil is calculated in frequency wavenumber domain and the solution for fixed or moving point or track loads follow as wavenumber integrals. The soil results from the measurements and the detailed models are approximated by simple formula which are used for the prediction of train-induced ground vibration. The influence of the track and the soil on the train induced ground vibration is analysed by the detailed models. The ground vibrations strongly depend on the regular and random inhomogeneity of the soil. The regular layering of the soil yields a cut-on and resonance phenomenon while the random inhomogeneity yields a scattering of the axle impulses which proved to be important for high-speed trains. The attenuation with distance of the ground vibration due to the point-like excitations such as vibrator or hammer excitations and the train-track excitation are investigated and compared. All theoretical results are compared with measurements at conventional and high-speed railway lines. T2 - ICSV19 - 19th International congress on sound and vibration CY - Vilnius, Lithuania DA - 08.07.2012 PY - 2012 SN - 978-609-459-079-5 SP - 1 EP - 8 AN - OPUS4-27218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir ED - Gao, G. T1 - The influence of soil properties on the ground vibration due to railway traffic and other sources - the comparability of different sites T2 - 6th International symposium on environmental vibration: Prediction, monitoring, mitigation and evaluation - Advances in environmental vibration CY - Shanghai, China DA - 2013-11-08 KW - Soil properties KW - Railway track KW - Ground vibration KW - Measurement KW - Assessment KW - Mitigation PY - 2013 SN - 978-7-5608-5303-1 SP - 175 EP - 186 PB - Tongji University Press AN - OPUS4-29731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Rücker, Werner ED - Nielsen, J. T1 - Mitigation measures for ballasted tracks - optimisation of sleepers, sleeper pads and the substructure by combined finite-element boundary-element calculations T2 - IWRN11 - 11th International workshop on railway noise CY - Uddevalla, Sweden DA - 2013-09-09 PY - 2013 SP - 463 EP - 470 AN - OPUS4-29446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Wave propagation from hammer, vibrator and railway excitation – theoretical and measured attenuation in space and frequency domain N2 - The attenuation of wave amplitudes is ruled by the planar, cylindrical or spherical geometry of the wave front (the geometric or power-law attenuation) but also by the damping of the soil (an exponential attenuation). Several low- and high-frequency filter effects are derived for the layering and the damping of the soil, for the moving static and the distributed train loads and for a homogeneous or randomly heterogeneous soil. Measurements of hammer- and train-induced vibrations at five sites have been analysed for these attenuation and filter effects. The measured attenuation with distance can be discribed by generalised power laws and some reasons will be discussed. The theoretical filter effects can well be found in the measurements. T2 - Wave Mechanics and Vibrations Conference CY - Lisbon, Potugal DA - 04.07.2022 KW - Hammer impact KW - Train passage KW - Layered soil KW - Attenuation KW - Filter effects KW - Randomly heterogeneous soil KW - Scattering PY - 2023 SN - 978-3-031-15757-8 DO - https://doi.org/10.1007/978-3-031-15758-5_35 SP - 352 EP - 359 PB - Springer Nature CY - Cham, Schweiz AN - OPUS4-56034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Rohrmann, R. T1 - Measurement and evaluation tools for ground and building vibrations from industrial pro-cesses, construction work, traffic and other sources N2 - Vibration measurements have many causes and many technical and natural sources. Problems can sometimes be solved by short-term measurements, but in many cases, a long-term measurement is necessary. In long-term measurements of days, weeks, months and even years, it is easy to collect a huge quantity of raw data, but at the end, the post-processing of these data can be exhausting (for example one-year vibration data of a wind energy tower). A software has been developed which con-sists of measuring and evaluation routines where the measuring routines can operate different meas-uring systems and different measuring cards. The main advantage of this software is the fact that the interesting evaluations can be integrated in the measuring process so that the characteristics of the vibration can be extracted without storing all the raw data. Only important time segments are stored, for example train passages. The overall concept of the software and the main evaluation routines will be described in some details. Examples of our measurement experience will illustrate the capabilities of the software. 1) Surveying construction work in nearby sensitive buildings (for example an old wind tunnel), including a stable alarm system and meaningful vibration limits. 2) Prediction of train-induced vibration for a planned building to prevent annoyance and to improve the building design. 3) Modal analysis and long term measurements of several single- or multi-span, concrete or steel bridges 4) Modal and wave analysis of coupled floors in a historical building (“Neues Palais” at Potsdam). 5) Soil properties of various measurement sites (different routines to evaluate the dispersion). Moreover, from many projects, amplitudes, frequencies, and attenuation laws have been collected and analysed for the different sources such as vibratory or impact pile driving and ground compaction, demolition work with different machines, blasting in quarries and in tunnel works, bomb and mine clearing. T2 - 28th International Congress on Sound and Vibration CY - Online meeting DA - 24.07.2022 KW - Ground vibration KW - Building vibration KW - Measurement KW - Evaluation KW - Modes KW - Waves PY - 2022 SP - 1 EP - 8 AN - OPUS4-56602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Railway-induced ground and building vibrations – Analysis in frequency-wavenumber domain and fast prediction with approximate models N2 - A simple and fast prediction scheme is presented for train-induced ground and building vibrations. For the emission, finite-element boundary-element or multiple-beam-on-continuous-soil models of the track have been analysed and approximated by faster track-on-Winkler-soil models. The vehicle-track interaction due to irregularities yields the excitation forces. For the transmission of waves in the soil, the wavenumber integral of the compliance of layered soils has been evaluated. The calculation time is reduced for the prediction by using the solution of a homogeneous half-space with a frequency-dependent wave velocity (the dispersion) of the soil. For the immision, many 2 and 3-dimenisonal finite-element building models have been investigated, and a good approximation has been established by a 1-dimensional soil-wall-floor model. In addition, the axle sequence of the train, the quasi-static and the “scattered” response of the soil, and the wave propagation from a tunnel to a pile foundation of a building have been included. T2 - ISMA-Conference 2022 CY - Leuven, Belgium DA - 12.09.2022 KW - Ground vibration KW - Simple prediction KW - Vehicle-track interaction KW - Layered soil KW - Soil-building interaction KW - Soil-wall-floor model KW - Propagation from a tunnel KW - Tunnel-pile transfer PY - 2022 SP - 1 EP - 13 PB - KU Leuven CY - Leuven AN - OPUS4-56603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -