TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Rohrmann, Rolf T1 - Measurement and evaluation tools for ground and building vibrations from industrial process-es, construction work, traffic and other sources N2 - Vibration measurements have many causes and many technical and natural sources. Problems can sometimes be solved by short-term measurements, but in many cases, a long-term measurement is necessary. In long-term measurements of days, weeks, months and even years, it is easy to collect a huge quantity of raw data, but at the end, the post-processing of these data can be exhausting (for example one-year vibration data of a wind energy tower). A software has been developed which con-sists of measuring and evaluation routines where the measuring routines can operate different meas-uring systems and different measuring cards. The main advantage of this software is the fact that the interesting evaluations can be integrated in the measuring process so that the characteristics of the vibration can be extracted without storing all the raw data. Only important time segments are stored, for example train passages. The overall concept of the software and the main evaluation routines will be described in some details. Examples of our measurement experience will illustrate the capabilities of the software. 1) Surveying construction work in nearby sensitive buildings (for example an old wind tunnel), including a stable alarm system and meaningful vibration limits. 2) Prediction of train-induced vibration for a planned building to prevent annoyance and to improve the building design. 3) Modal analysis and long term measurements of several single- or multi-span, concrete or steel bridges 4) Modal and wave analysis of coupled floors in a historical building (“Neues Palais” at Potsdam). 5) Soil properties of various measurement sites (different routines to evaluate the dispersion). Moreover, from many projects, amplitudes, frequencies, and attenuation laws have been collected and analysed for the different sources such as vibratory or impact pile driving and ground compaction, demolition work with different machines, blasting in quarries and in tunnel works, bomb and mine clearing. T2 - 28th International Congress on Sound and Vibration (ICSV28) CY - Online meeting DA - 25.07.2022 KW - Ground vibration KW - Building vibration KW - Measurement KW - Evaluation KW - Modes and waves PY - 2022 AN - OPUS4-56035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Said, Samir A1 - Auersch, Lutz T1 - Measurement of slab track behaviour at different sites N2 - Measured train passages and hammer impacts in combination with track-soil calculation have been successfully used for the detection of damaged slab tracks. This approach is now extended to intact slab and ballast tracks. The vibrations of many tracks have been measured at several levels from rail, sleeper, track plate, base plate, base layer to the subsoil by velocity or acceleration sensors. The time histories have to be integrated once or twice to get the displacements. The displacement signals include an arbitrary time-dependent shift which must be eliminated or respected in the interpretation. On the other hand, the calculation of slab and ballast tracks have been done in frequency-wavenumber domain. The displacements along the track and the frequency-dependent compliance transfer functions can be calculated. The latter can be compared with the results of the hammer impacts on the track. The deformation of the track can be transformed to time histories for a whole train and compared to the measured train passages. Many slab (and ballast) tracks have been measured at different sites. The displacements of the tracks are presented, and the following parameters have been analysed in the measurement results: slab track vs. ballast track, different types of slab tracks, damaged slab tracks, different trains, switches at different measuring points, an elastic layer, the mortar layer, different soils at different places. The soil should have the dominant influence on the track-plate displacements. Slab and ballast track yield also big differences in maximum displacement and width of deformation. Some of the preceding aspects will be analysed in comparison of measurement and theory. T2 - 26th International Congress on Sound and Vibration (ICSV26) CY - Montreal, Canada DA - 07.07.2019 KW - Displacements KW - Train passage KW - Slab track KW - Hammer impact KW - Vibration measurements PY - 2019 AN - OPUS4-48495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir T1 - Measurement of slab track behaviour at different sites N2 - Measured train passages and hammer impacts in combination with track-soil calculation have been successfully used for the detection of damaged slab tracks. This approach is now extended to intact slab and ballast tracks. The vibrations of many tracks have been measured at several levels from rail, sleeper, track plate, base plate, base layer to the subsoil by velocity or acceleration sensors. The time histories have to be integrated once or twice to get the displacements. The displacement signals include an arbitrary time-dependent shift which must be eliminated or respected in the interpretation. On the other hand, the calculation of slab and ballast tracks have been done in frequency-wavenumber domain. The displacements along the track and the frequency-dependent compliance transfer functions can be calculated. The latter can be compared with the results of the hammer impacts on the track. The deformation of the track can be transformed to time histories for a whole train and compared to the measured train passages. Many slab (and ballast) tracks have been measured at different sites. The displacements of the tracks are presented, and the following parameters have been analysed in the measurement results: slab track vs. ballast track, different types of slab tracks, damaged slab tracks, different trains, switches at different measuring points, an elastic layer, the mortar layer, different soils at different places. The soil should have the dominant influence on the track-plate displacements. Slab and ballast track yield also big differences in maximum displacement and width of deformation. Some of the preceding aspects will be analysed in comparison of measurement and theory. T2 - 26th International Congress on Sound and Vibration (ICSV26) CY - Montreal, Canada DA - 07.07.2019 KW - Displacements KW - Slab track KW - Train passage KW - Hammer impact KW - Vibration measurements PY - 2019 SN - 978-1-9991810-0-0 SN - 2329-3675 SP - T15RS01_316_1 EP - T15RS01_316_8 PB - Canadian Acoustical Association CY - Montreal, Kanad AN - OPUS4-48498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Stengel, Dominik T1 - Measurements of downburst wind loading acting on an overhead transmission line in northern Germany N2 - Along an overhead transmission line in Northern Germany, a unique instrumentation of anemometers and force measurements is installed. Details of this test line with wind measurements along a horizontal axis are given. A recent event of a presumable downburst wind event is analyzed by means of available data and precedent works on thunderstorm analysis. The measured response of the conductors at the suspension tower is investigated and compared with time domain simulation of a finite element model. T2 - EURODYN 2017 CY - Rome, Italy DA - 10.09.2017 KW - Downburst KW - Overhead transmission line KW - Finite element method KW - Non-synoptic wind event PY - 2017 AN - OPUS4-42491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Müller, Roger T1 - Measurements on the vehicle-track interaction and the excitation of railway-induced ground vibration N2 - Two railway measurement campaigns have been performed in Germany and Switzerland which yield insight in the vehicle-track-soil interaction. The campaign in Germany has included simultaneous measurement of vehicle, track, and soil vibrations during train runs with 16, 25, 40, 63, 80, 100, 125, 140, 160 km/h, and impulse measurements of the passenger car, three track sections and the soil. Two ballast tracks, one on the soil surface and one on a concrete bridge, have been investigated as well as a slab track in a tunnel. Ten different sites in Switzerland have been measured for soil properties and train-induced ground vibrations, which allow to determine the excitation forces of the railway traffic. New axle-box measurements at some of the Swiss sites have been analysed to get further experimental evidence. All these measurements have been evaluated to characterize the excitation processes. Relations between vehicle vibration and ground vibration can be observed. The vehicle vibrations, namely the accelerations of the wheelsets, yield the dynamic forces due to the passage over the irregularities of the vehicle and the track. The ground vibrations are correlated to these dynamic forces to a certain extent. Some mid-frequency ground vibration amplitudes, however, are higher than expected from the dynamic excitation forces. The experimental observations can be explained by an irregular response to the passage of the static loads, that means the passage of the static loads over an irregular ballast or soil. This correct understanding of the excitation processes is important for the prediction as well as for the mitigation of railway induced ground vibrations. T2 - EURODYN 2017 CY - Rome, Italy DA - 10.09.2017 KW - Vehicle-track interaction KW - Ground vibration KW - Track vibration KW - Railway measurement campaign KW - Axle box measurements PY - 2017 AN - OPUS4-42487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir A1 - Müller, Roger T1 - Measurements on the vehicle-track interaction and the excitation of railway-induced ground vibration N2 - Two railway measurement campaigns have been performed in Germany and Switzerland which yield insight in the vehicle-track-soil interaction. The campaign in Germany has included simultaneous measurement of vehicle, track, and soil vibrations during train runs with 16, 25, 40, 63, 80, 100, 125, 140, 160 km/h, and impulse measurements of the passenger car, three track sections and the soil. Two ballast tracks, one on the soil surface and one on a concrete bridge, have been investigated as well as a slab track in a tunnel. Ten different sites in Switzerland have been measured for soil properties and train-induced ground vibrations, which allow to determine the excitation forces of the railway traffic. New axle-box measurements at some of the Swiss sites have been analysed to get further experimental evidence. All these measurements have been evaluated to characterize the excitation processes. Relations between vehicle vibration and ground vibration can be observed. The vehicle vibrations, namely the accelerations of the wheelsets, yield the dynamic forces due to the passage over the irregularities of the vehicle and the track. The ground vibrations are correlated to these dynamic forces to a certain extent. Some mid-frequency ground vibration amplitudes, however, are higher than expected from the dynamic excitation forces. The experimental observations can be explained by an irregular response to the passage of the static loads, that means the passage of the static loads over an irregular ballast or soil. This correct understanding of the excitation processes is important for the prediction as well as for the mitigation of railway induced ground vibrations. T2 - X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017) KW - Vehicle-track interaction KW - Ground vibration KW - Track vibration KW - Railway measurement campaign KW - Axle box measurements PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-420889 DO - https://doi.org/10.1016/j.proeng.2017.09.390 SN - 1877-7058 VL - 199 SP - 2615 EP - 2620 PB - Elsevier CY - London AN - OPUS4-42088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Methods and phenomena of single and coupled floor vibrations - Measurements in apartment and office buildings N2 - A survey of the phenomena and methods for floor vibrations is presented. Experimental results of floor vibrations are shown for many floors in six different buildings. The signals have been evaluated for waves and modes by simple procedures. General rules have been established between the material and the area of a specific floor, and its local eigenfrequency. The damping values of the floor vibrations have been found between D = 1 and 10 % where somewhat higher values have been measured for wooden floors, and a weak correlation with the eigenfrequency has been established. The velocities of bending waves propagating in a storey and the attenuation with distance in the building have been analysed. A considerable transfer of vibration from one room to far away parts of the building has been found in the studied buildings with concrete and wooden floors. An example building has been analysed for modes of coupled floor bays. The strong coupling of similar neighbouring floor bays would yield a wide band of global resonance frequencies. The measured wooden floor exhibits a weak coupling of the neighbouring floor bays and a narrower band of eigenfrequencies. A special method has been tested with the impulse measurements to estimate the coupled eigenmodes in presence of the high damping. From the ambient measurement, a low-frequency vibration mode has been detected which includes the vibration of the whole building and the soil. The coupling of floors to other floors and the whole building is an important phenomenon of structural dynamics which should be observed for the prediction of vibration due to internal and external sources. PY - 2015 SN - 1351-010X VL - 22 IS - 2 SP - 81 EP - 108 PB - Multi-Science Publ. Co. CY - Brentwood AN - OPUS4-34839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Auersch, Lutz A1 - Rücker, Werner ED - Nielsen, J.C.O. T1 - Mitigation measures against vibration for ballasted tracks - Optimisation of sleepers, sleeper pads and the substructure by combined finite-element boundary-element calculations N2 - The ground vibrations, which are generated by trains on different tracks, have been calculated by finite-element boundary-element models. The ballasted track is modelled in detail by the finite element method. The infinite soil is modelled by the boundary element method as a homogeneous or layered half-space. The track-soil system is coupled to a simple rigid mass model of the vehicle so that the vehicle-track interaction is completely included. Transfer functions are calculated in frequency domain without and with vehicle-track interaction, the compliance of the track and the mobilities of the soil at different distances from the track. Finally, the ratios between the ground vibration amplitudes with and without mitigation measures are calculated to quantify the effectiveness of the mitigation measures. Tracks with under-sleeper pads have been investigated in a wide parameter study for the RIVAS project. The main parameters that influence the reduction of ground vibration are the stiffness of the under-sleeper pad, the mass and the width of the sleeper. The softest sleeper pad yields the best reduction of the ground vibration. The influence of the sleeper mass is not so strong, as the characteristic frequency is ruled by the mass of the sleeper and the mass of the wheelset as well. PY - 2015 SN - 978-3-662-44832-8 DO - https://doi.org/10.1007/978-3-662-44832-8_48 VL - 126 SP - 401 EP - 408 PB - Springer CY - Berlin Heidelberg AN - OPUS4-32468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Rücker, Werner ED - Nielsen, J. T1 - Mitigation measures for ballasted tracks - optimisation of sleepers, sleeper pads and the substructure by combined finite-element boundary-element calculations T2 - IWRN11 - 11th International workshop on railway noise CY - Uddevalla, Sweden DA - 2013-09-09 PY - 2013 SP - 463 EP - 470 AN - OPUS4-29446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Auersch, Lutz T1 - Mitigation measures for slab tracks - wide sleepers on soft pads and different slabs - Results from the finite element boundary element method N2 - The ground vibrations, which are generated by trains on different slab tracks, have been calculated by finite-element boundary-element models. The slab track is modelled in detail by the finite element method. The infinite soil is modelled by the boundary element method as a homogeneous half-space. The track-soil system is coupled with a simple rigid mass model of the vehicle so that the vehicle-track interaction is completely included. Transfer functions are calculated in frequency domain without and with vehicle-track interaction, the compliance of the track and the mobilities of the soil at different distances from the track. Finally, the ratios between the ground vibration amplitudes with and without mitigation measure are calculated to quantify the effectiveness of the mitigation measure. Tracks with under sleeper pads have been investigated in a parameter study. The main parameter that influences the reduction of ground vibration is the stiffness of the under sleeper pad. The softest sleeper pad yields the best reduction of the ground vibration. The influence of other parameters has been examined. The stiffness of the rail pads, the stiffness of the slab material, the stiffness of the sleeper material, and the distance of the sleepers. All these parameters show no or only a minor influence on the mitigation effect. As the standard isolated track, a track with an under sleeper pad of a stiffness of kS = 5 107 N/m has been chosen, which can also be expressed as a stiffness per area of kS ’’ = 3.7 107 N/m3 = 0.037 N/mm3. The resonance frequency for this pad stiffness is observed between 32 and 40 Hz. The reduction of the ground vibration is about vi,I /vi,U = 0.1 at 100 Hz. KW - Wide sleeper KW - Under sleeper pad KW - Finite-element boudnary-element method KW - Slab track KW - Mitigation KW - Ground vibration PY - 2012 SP - 1 EP - 50 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-56608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -