TY - CONF A1 - Auersch, Lutz T1 - The influence of the soil on track dynamics and ground-borne vibration T2 - 9th International Workshop on Railway Noise (IWRN) CY - Munich, Germany DA - 2007-09-04 PY - 2007 SP - S.4.1, 1 EP - 9 PB - International Workshop on Railway Noise CY - München AN - OPUS4-16438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - The influence of the track on railway induced ground vibration T2 - 30. Deutsche Jahrestagung für Akustik (DAGA) / 7 Congres Francais d'acoustique (CFA) CY - Strasbourg, France DA - 2004-03-25 PY - 2004 AN - OPUS4-3411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Auersch, Lutz ED - Cassereau, D. T1 - The influence of the track on railway induced ground vibration T2 - Joint Congress CFA/DAGA '04 ; 7e Congrès Français d'Acoustique ; 30. Deutsche Jahrestagung für Akustik ; Salon Européen de l'Acoustique ; Europäische Akustik-Austellung CY - Strasbourg, France DA - 2004-03-22 PY - 2004 SN - 2-9521105-2-2 VL - 2 SP - 1079 EP - 1080 PB - Société Française d'Acoustique (SFA) CY - Paris AN - OPUS4-3710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Ziemens, Susanne T1 - The response of different buildings to free-field excitation – a study using detailed finite element models N2 - A study on building vibrations has been performed by finite element calculations. Family houses, multi-storey residential buildings, office buildings and office towers have been modelled in detail. The frequency-dependent response due to a free-field excitation has been evaluated for walls, columns and floors. The ratio of building amplitudes to free-field amplitudes starts with uB/u0 = 1 at zero frequency and is usually lower than 1 at 50 Hz, the end of the frequency range considered here. In between, amplifications occur due to several reasons. There are „soil resonances“ where the whole building is vibrating on the compliant soil, “column resonances” where the upper storeys are vibrating on the compliant columns, and the “floor resonances” where the floors are vibrating excited by their supports. Results are presented for all building types, but a special focus is set on office buildings. A parameter study shows the influence of the stiffness of the soil, the number of storeys, and the width of the building. It has been found that the “soil resonance” is strongly modified by the low-frequency floor resonances for the normal office building. The main resonance of a twenty-storey office tower is determined equally by the “soil mode” and the “column mode”. It is an important observation for these office buildings that the resonances can differ for different parts of the building such as the centre, the edge, the corner, and the core of the building. This leads to non-uniform vibration modes across the building, which look like another type of “floor resonance” and which have been observed in several real building projects. Experimental results will be shown which can confirm the calculated phenomena. T2 - EURODYN 2020 XI International Conference on Structural Dynamics CY - Online meeting DA - 13.11.2020 KW - Building vibration KW - Office building KW - Residential building KW - Soil-building resonance KW - Floor resonance KW - Column/wall resonance PY - 2020 SN - 978-618-85072-2-7 SP - 4560 EP - 4576 CY - Athen AN - OPUS4-51678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Ziemens, Susanne T1 - The response of different buildings to free-field excitation – a study using detailed finite element models N2 - A study on building vibrations has been performed by finite element calculations. Family houses, multi-storey residential buildings, office buildings and office towers have been modelled in detail. The frequency-dependent response due to a free-field excitation has been evaluated for walls, columns and floors. The ratio of building amplitudes to free-field amplitudes starts with uB/u0 = 1 at zero frequency and is usually lower than 1 at 50 Hz, the end of the frequency range considered here. In between, amplifications occur due to several reasons. There are „soil resonances“ where the whole building is vibrating on the compliant soil, “column resonances” where the upper storeys are vibrating on the compliant columns, and the “floor resonances” where the floors are vibrating excited by their supports. Results are presented for all building types, but a special focus is set on office buildings. A parameter study shows the influence of the stiffness of the soil, the number of storeys, and the width of the building. It has been found that the “soil resonance” is strongly modified by the low-frequency floor resonances for the normal office building. The main resonance of a twenty-storey office tower is determined equally by the “soil mode” and the “column mode”. It is an important observation for these office buildings that the resonances can differ for different parts of the building such as the centre, the edge, the corner, and the core of the building. This leads to non-uniform vibration modes across the building, which look like another type of “floor resonance” and which have been observed in several real building projects. Experimental results will be shown which can confirm the calculated phenomena. T2 - EURODYN 2020 XI International Conference on Structural Dynamics CY - Online meeting DA - 23.11.2020 KW - Building vibration PY - 2020 AN - OPUS4-51679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - The role of vehicle dynamics in train-induced ground vibrations and the detection of irregular axle-pulse responses due to a varying track support stiffness N2 - Train-induced ground vibrations are all generated by the vehicle, by static or dynamic vehicle loads. The most important and most accepted excitation are the dynamic wheel loads from the passage over track irregularities. Dynamic wheel loads will be compared from parallel axle-box and ground vibration measurements at more than seven sites. Some low-frequency excitation of ground vibrations, typically between 10 and 30 Hz, cannot be found in the axle-box measurements. Therefore, other vehicle modes, such as rigid bogie modes, flexible carriage modes, rigid and flexible wheelset modes, have been analysed for additional excitation forces. These vehicle dynamics analyses give an explanation for higher axle-box results at high frequencies, but not for the excitation of the higher low-frequency ground-vibration component. Finally, the effect of the moving static train loads will be analysed. For a regular track and soil, the moving static train loads yield the quasi-static response which exists only in the low-frequency nearfield of the track. If the support stiffness is randomly varying along the track, the pulses on the track generate an additional low-frequency component which is called the irregular pulse responses. This component will be demonstrated by numerical analysis where all axle pulses are superposed in frequency domain. KW - Wheelset KW - Vehicle-track interaction KW - Rail roughness KW - Random dynamics and vibrations KW - Modal analysis PY - 2022 DO - https://doi.org/10.1177/09544097221086064 SN - 0954-4097 VL - 236 IS - 10 SP - 1218 EP - 1233 PB - Sage CY - London AN - OPUS4-55000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - The use and validation of measured, theoretical, and approximate point-load solutions for the prediction of train-induced vibration in homogeneous and inhomogeneous soils N2 - The layered soil is calculated in the frequency wavenumber domain and the solutions for fixed or moving point or track loads follow as wavenumber integrals. The resulting point load solutions can be approximated by simple formula. Measurements yield the specific soil parameters for the theoretical or approximate solutions, but they can also directly provide the point-load solution (the transfer function of that site). A prediction method for the train-induced ground vibration has been developed, based on one of these site-specific transfer functions. The ground vibrations strongly depend on the regular and irregular inhomogeneity of the soil. The regular layering of the soil yields a cut-on and a resonance phenomenon, while the irregular inhomogeneity seems to be important for high-speed trains. The attenuations with the distance of the ground vibration, due to point-like excitations such as vibrator, hammer, or train-track excitations, were investigated and compared. All theoretical results were compared with measurements at conventional and high-speed railway lines, validating the approximate prediction method. PY - 2014 SN - 1027-5851 VL - 19 IS - 1 SP - 52 EP - 64 CY - St. Petersburg, Russia AN - OPUS4-30494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Theoretical and experimental excitation force spectra for railway-induced ground vibration: vehicle-track-soil interaction, irregularities and soil measurements N2 - Excitation force spectra are necessary for a realistic prediction of railway-induced ground vibration. The excitation forces cause the ground vibration and they are themselves a result of irregularities passed by the train. The methods of the related analyses - the wavenumber integration for the wave propagation in homogeneous or layered soils, the combined finite-element boundary-element method for the vehicle-track-soil interaction - have already been presented and are the base for the advanced topic of this contribution. This contribution determines excitation force spectra of railway traffic by two completely different methods. The forward analysis starts with vehicle, track and soil irregularities, which are taken from literature and axle-box measurements, calculates the vehicle-track interaction and gets theoretical force spectra as the result. The second method is a backward analysis from the measured ground vibration of railway traffic. A calculated or measured transfer function of the soil is used to determine the excitation force spectrum of the train. A number of measurements of different soils and different trains with different speeds are analysed in that way. Forward and backward analysis yield the same approximate force spectra with values around 1 kN for each axle and third of octave. KW - Railway forces KW - Vehicle-track interaction KW - Irregularities KW - Rail roughness KW - Track alignment KW - Wheel out-of-roundness KW - Ground vibration KW - Soil transfer function PY - 2010 DO - https://doi.org/10.1080/00423110802691515 SN - 0042-3114 VL - 48 IS - 2 SP - 235 EP - 261 PB - Taylor & Francis CY - Basingstoke, Hants. AN - OPUS4-22361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Auersch, Lutz A1 - Semrau, Norbert A1 - Schmid, Wolfgang A1 - Said, Samir A1 - Rücker, Werner ED - Grundmann, H. ED - Schuëller, G. I. T1 - Theory and experiments on wave propagation, on track-soil and on soil-building interaction related to railway induced vibration T2 - 5th International Conference on Structural Dynamics ; 4th International Conference on Structural Dynamics ; EURODYN 2002 CY - Munich, Germany DA - 2002-09-02 PY - 2002 SN - 90-5809-512-6 VL - 2 SP - 1137 EP - 1142 PB - Balkema CY - Lisse AN - OPUS4-1595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Semrau, Norbert A1 - Schmid, Wolfgang A1 - Said, Samir A1 - Rücker, Werner T1 - Theory and experiments on wave propagation, on track-soil and on soil-building interaction related to railway induced vibration T2 - Fourth International Conference on Structural Dymanics (EURODYN 4) CY - Munich, Germany DA - 2002-09-02 PY - 2002 AN - OPUS4-6614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -