TY - CONF A1 - Auersch, Lutz T1 - Railway vibration – fast physics-based models for the prediction of ground vibration and the identification of track damage N2 - The following applications of machine learning will be discussed: 1. The prediction of the wave propagation from a railway line (completely physics based for surface lines, physics-based machine learning for tunnel lines) 2. The track behaviour for the emission of train-induced ground vibration (physics based for homogeneous soil, machine learning for layered soil) 3. Track damage detection and quantification from frequency response functions and moving load responses 4. Bridge damage detection and localisation from modal analysis and moving load 5. The use of axle-box acceleration for the identification of track/sub-soil condition and bridge resonances. The prediction of railway vibration usually needs time-consuming finite element, boundary element and wavenumber domain calculations. For a user-friendly prediction software however, fast calculations are needed. Several time-consuming detailed calculations have been used to develop simpler and fast models for the surface railway lines. The more challenging prediction from tunnel lines will be attacked by purely mathematical and by physics-informed machine learning. The dynamic stiffnesses of isolated or un-isolated railway tracks from detailed calculations with a continuous soil have been approximated with the simpler Winkler soil. The vehicle-track resonance (P2 resonance) rules the effect of the mitigation measures, and it can also be used for the on-board monitoring of the track and sub-soil condition. For the identification of track damage such as gaps between sleepers, track slabs and layers, detailed models with a continuous soil have been updated to get the best fit to the measured frequency response functions from hammer tests and the deformation pattern from the moving load response. Whereas the track damage can be locally identified, this is more difficult for bridges where the modal analysis gives mainly global information. The influence lines of the inclination for statically passing vehicles (locomotive, truck, compaction roller) have been used to localise bridge damage (stiffness variations). The on-board monitoring of rail bridges needs special conditions (regular trains with special speeds) to excite and measure the bridge resonance. T2 - 11th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam, Germany DA - 10.06.2024 KW - Vibration prediction KW - Track damage detection KW - Human and machine learning KW - Wave propagation KW - Surface line KW - Tunnel KW - Bridge resonance PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612462 DO - https://doi.org/10.58286/29865 SN - 1435-4934 SP - 1 EP - 9 PB - NDT.net CY - Kirchwald AN - OPUS4-61246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Railway-induced ground and building vibrations – Analysis in frequency-wavenumber domain and fast prediction with approximate models N2 - A simple and fast prediction scheme is presented for train-induced ground and building vibrations. For the emission, finite-element boundary-element or multiple-beam-on-continuous-soil models of the track have been analysed and approximated by faster track-on-Winkler-soil models. The vehicle-track interaction due to irregularities yields the excitation forces. For the transmission of waves in the soil, the wavenumber integral of the compliance of layered soils has been evaluated. The calculation time is reduced for the prediction by using the solution of a homogeneous half-space with a frequency-dependent wave velocity (the dispersion) of the soil. For the immision, many 2 and 3-dimenisonal finite-element building models have been investigated, and a good approximation has been established by a 1-dimensional soil-wall-floor model. In addition, the axle sequence of the train, the quasi-static and the “scattered” response of the soil, and the wave propagation from a tunnel to a pile foundation of a building have been included. T2 - ISMA-Conference CY - Leuven, Belgium DA - 12.09.2022 KW - Ground vibration KW - Building vibration KW - Railways KW - Simple and fast prediction PY - 2022 AN - OPUS4-56038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Railway-induced ground and building vibrations – Analysis in frequency-wavenumber domain and fast prediction with approximate models N2 - A simple and fast prediction scheme is presented for train-induced ground and building vibrations. For the emission, finite-element boundary-element or multiple-beam-on-continuous-soil models of the track have been analysed and approximated by faster track-on-Winkler-soil models. The vehicle-track interaction due to irregularities yields the excitation forces. For the transmission of waves in the soil, the wavenumber integral of the compliance of layered soils has been evaluated. The calculation time is reduced for the prediction by using the solution of a homogeneous half-space with a frequency-dependent wave velocity (the dispersion) of the soil. For the immision, many 2 and 3-dimenisonal finite-element building models have been investigated, and a good approximation has been established by a 1-dimensional soil-wall-floor model. In addition, the axle sequence of the train, the quasi-static and the “scattered” response of the soil, and the wave propagation from a tunnel to a pile foundation of a building have been included. T2 - ISMA-Conference 2022 CY - Leuven, Belgium DA - 12.09.2022 KW - Ground vibration KW - Simple prediction KW - Vehicle-track interaction KW - Layered soil KW - Soil-building interaction KW - Soil-wall-floor model KW - Propagation from a tunnel KW - Tunnel-pile transfer PY - 2022 SP - 1 EP - 13 PB - KU Leuven CY - Leuven AN - OPUS4-56603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Realistic axle-load spectra for the prediction of ground vibrations form rail traffic N2 - Train passages induce static and dynamic forces on the track, the train-induced vibrations propagate through the soil and excite neighbouring buildings. The problem of train vibrations is divided into the parts emission, which is the excitation by railway traffic (the present contribution), transmission, which is the wave propagation through the soil, and immission, which is the transfer into a building, - The calculation of the axle loads are based on the vehicle-track-soil interaction. This interaction uses the dynamic stiffness of the vehicle (the inertia of the wheelset) and the dynamic stiffness of the track-soil System. Based on various time consuming finite-element boundary-element calculations, an approximate track-soil model has been established. The vehicle-track-soil analysis yields several transfer functions between the various geometric or stiffness irregularities and the axle loads of the train. Geometric irregularities of the vehicle (the wheels) and the track (rail surface and track alignment) are the simplest components. Geometric irregularities of the subsoil (trackbed irregularities) have to be transferred to effective irregularities at rail level. The bending stiffness of the track is filtering out the short-wavelength contribution. Stiffness irregularities occur due to random variations in the bailast or the subsoil, which must also be transferred to effective track irregularities, and due to the discrete rail support on sleepers. The axle loads due to the effective track errors from stiffness variations have their specific vehicle-track transfer function. - All necessary formula for the prediction of axle-load spectra will be presented. The prediction method is compared with axle-box measurements at a Standard ballasted track. Moreover, ground Vibration measurements at numerous sites are exploited for the axle-load spectra and the Validation of the prediction method. T2 - ICSV22 - 22nd International congress on sound and vibration CY - Florence, Italy DA - 12.07.2015 PY - 2015 SN - 978-88-88942-48-3 SN - 2329-3675 SP - 1 EP - 8 AN - OPUS4-33781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Realistic axle-load spectra from ground vibrations measured near railway lines N2 - Train-induced ground vibrations are generated by static and dynamic axle loads which can be calculated by vehicle-track-soil models and the vehicle and track irregularities. A fast prediction method has been developed which uses approximate transfer functions of layered soils. In the present contribution, this prediction method is used for the inverse calculation of the axle-load spectra from the measured ground vibration. The layered soils of some measuring sites show very differing ground vibration spectra in the amplitude range of 0.0001–1.0 mm/s as a consequence of the soft layer and stiff half-space, differing layer frequencies, as well as the far- and near-field measuring points. The back-calculation, however, yields axle-load spectra within a single order of magnitude around 1 kN. Axle-box measurements confirm the amplitude level of the axle loads. This standard axle-load spectrum can be used for a basic prediction at a new site. The separation of train and site-specific components allows a better evaluation of railway vibrations, for example, of different trains and different tracks. By eliminating the effects of differing soil characteristics, an important mid-frequency component has been found which lies between 8 and 32 Hz depending on the train speed. The origin of this dominant mid-frequency component is discussed using advanced prediction methods like moving constant loads, scattered axle impulses and axle-sequence spectra. PY - 2015 DO - https://doi.org/10.1080/23248378.2015.1076624 SN - 2324-8378 VL - 3 IS - 4 SP - 180 EP - 200 PB - Taylor & Francis CY - Abingdon AN - OPUS4-34768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz ED - Náprstek, J. ED - Horácek, J. ED - Okrouhlík, M. ED - Marvalová, B. ED - Verhulst, F. ED - Sawicki, J.T. T1 - Reducing ground-borne micro-vibrations by plate foundations T2 - Vibration problems ICOVP 2011 - 10th international conference on vibration problems CY - Prague, Czech Republic DA - 2011-09-05 KW - Plate-soil interaction KW - Wave excitation KW - Vibration reduction KW - Finite-element boundary-element method PY - 2011 SN - 978-94-007-2068-8 SN - 0930-8989 N1 - Serientitel: Springer proceedings in physics – Series title: Springer proceedings in physics VL - 139 SP - 329 EP - 335 PB - Springer AN - OPUS4-24804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Reduction in Train-Induced Vibrations—Calculations of Different Railway Lines and Mitigation Measures in the Transmission Path N2 - The reduction in train-induced ground vibrations by different railway lines and by mitigation measures in the propagation path was analysed in a unified approach by two-dimensional finite element calculations. In general, there was no reduction at low frequencies, and the reduction be-came stronger with increasing frequencies. A maximum reduction of 0.1 at high frequencies was established with an open trench. Reductions between 0.7 and 0.2 have been found for the other sit-uations, filled trenches, walls, plates, and blocks, as well as for railway lines on dams, in cuts and in a tunnel. Bridges can produce amplifications due to their resonance frequencies, but also strong reductions due to massive bridge piers. The influence of some parameters has been analysed, such as the bridge span, the inclination of the dam and the cut, the stiffness of the soil, and the tunnel structure. The dynamic track stiffnesses of a surface, bridge, and tunnel track have been calculated using the 3D finite-element boundary-element method for comparison with corresponding meas-urements. KW - Train-induced vibration KW - Mitigation KW - Trench KW - Obstacles KW - Tunnel KW - Bridge KW - Finite element KW - Boundary element PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579573 DO - https://doi.org/10.3390/app13116706 VL - 13 IS - 11 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-57957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Reduction of ground induced building vibrations by kinematic and inertial soil structure interaction and by base isolation N2 - Many buildings on the soil have been measured and the transfer function freefield-to-building is ana-lysed. In general, an amplification at low frequencies, an amplification for the floor resonances, and a reduction for higher frequencies can be observed. Most of the measurement examples show a flexible behaviour along the height of the buildings. The prediction of building vibration consists typically of three steps. At first, the dynamic stiffness of the foundation and secondly the kinematic soil-structure interaction has to be calculated for example by the combined finite-element boundary-element meth-od. The stiffness of the foundation reduces the incoming waves (the kinematic interaction). Finally, the inertial interaction of the building with the foundation soil is calculated by the conventional finite ele-ment method where the dynamic foundation stiffness from the first step is added at the bottom of the building. The building on the compliant soil has a fundamental vertical resonance usually below 10 Hz. A parametrical variation clearly shows the influence of the elasticity of the building on this reso-nance frequency and amplitude. Moreover for column-type office buildings, the low-frequency floor resonances can further reduce this fundamental frequency. A 1-dimensional model has been estab-lished which can well approximate the behaviour of the 3-dimensional building models. It is used to demonstrate the effect of a base isolation with soft elements at the foundation. A rigid building model clearly over-estimates the isolation effect, which is smaller for a model with flexible walls, columns and floors. An even simpler model of an infinitely high building is suggested for the mitigation effect, and the resonance frequency of the rigid building should be replaced by a better performance indica-tor, which is based on the impedance ratio of the isolation and the wall and which can be also ex-pressed as a characteristic frequency. T2 - 30th International Congress on Sound and Vibration CY - Amsterdam, Netherlands DA - 08.07.2024 KW - Building vibrations KW - Base isolation KW - Foundation stiffness KW - Kinematic soil-structure interaction KW - Transfer functions of flexible buildings PY - 2024 AN - OPUS4-61229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Reduction of ground-induced building vibrations by kinematic and inertial soil-structure interac-tion and by base isolation N2 - Many buildings on the soil have been measured and the transfer function freefield-to-building is ana-lysed. In general, an amplification at low frequencies, an amplification for the floor resonances, and a reduction for higher frequencies can be observed. Most of the measurement examples show a flexible behaviour along the height of the buildings. The prediction of building vibration consists typically of three steps. At first, the dynamic stiffness of the foundation and secondly the kinematic soil-structure interaction has to be calculated for example by the combined finite-element boundary-element meth-od. The stiffness of the foundation reduces the incoming waves (the kinematic interaction). Finally, the inertial interaction of the building with the foundation soil is calculated by the conventional finite ele-ment method where the dynamic foundation stiffness from the first step is added at the bottom of the building. The building on the compliant soil has a fundamental vertical resonance usually below 10 Hz. A parametrical variation clearly shows the influence of the elasticity of the building on this reso-nance frequency and amplitude. Moreover for column-type office buildings, the low-frequency floor resonances can further reduce this fundamental frequency. A 1-dimensional model has been estab-lished which can well approximate the behaviour of the 3-dimensional building models. It is used to demonstrate the effect of a base isolation with soft elements at the foundation. A rigid building model clearly over-estimates the isolation effect, which is smaller for a model with flexible walls, columns and floors. An even simpler model of an infinitely high building is suggested for the mitigation effect, and the resonance frequency of the rigid building should be replaced by a better performance indica-tor, which is based on the impedance ratio of the isolation and the wall and which can be also ex-pressed as a characteristic frequency. T2 - 30th International Congress on Sound and Vibration CY - Amsterdam, Netherlands DA - 08.07.2024 KW - Building vibrations KW - Base isolation KW - Foundation stiffness KW - Kinematic soil-structure interaction KW - Transfer functions of flexible buildings PY - 2024 SN - 978-90-90-39058-1 SN - 2329-3675 SP - 1 EP - 8 AN - OPUS4-61245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Resonances of railway bridges analysed in frequency domain by the modal-force-excitation, bridge-transfer and axle-sequence spectra N2 - In this article, the passage of different trains over different bridges will be studied for resonant excitation. The intensity of the resonance will be estimated in frequency domain by using three separated spectra. At first, the excitation spectrum of the modal forces is built by the mode shape and the passage time of the train over the bridge. The second spectrum is the frequency response function of the bridge which include the modal frequency, damping and mass. The third part is the spectrum of the axle sequence of the train. The influences of train speed, bridge length, bridge support, track irregularities, and train type on the resonance amplitudes will be analysed for each of these spectra separately for getting a better insight. A variety of axle-sequence spectra and corresponding rules will be presented for different vehicles and trains. As examples, the passage of a slow freight train over a long-span bridge, a normal passenger train over a medium-span bridge, and a high-speed train over a short bridge will be analysed. Corresponding measurements show the amplification, but also the cancellation of the subsequent axle responses. Namely in one of the measurement examples, the first mode of the bridge was amplified and the second mode was cancelled at a low speed of the train and vice versa at a higher speed. KW - Railway bridge KW - Bridge vibration KW - Train passage KW - Axle sequence KW - Resonance KW - Cancellation KW - Fequency domain PY - 2021 DO - https://doi.org/10.1016/j.engstruct.2021.113282 SN - 0141-0296 VL - 249 SP - 1 EP - 9 PB - Elsevier Ltd. CY - London AN - OPUS4-53766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -