TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Track-soil dynamics – calculation and measurement of damaged and repaired slab tracks N2 - The damage detection and repair control have become important tasks for ballast and slab tracks. Measurements which compare the damaged and the repaired status of the same track section at different times, or which compare a damaged and an intact track section at the same time, have been successfully performed at some sites in Germany. The loss of contact between the sleeper and the track plate, between the track plate and the base plate, and between the base plate and the base layer have been analysed. The soil properties of each site have been measured and have been used to establish realistic track-soil models. Theoretical results of the wavenumber domain and the finite-element boundary element method have been compared with the experimental results. The observed experimental and theoretical results, changes in the time histories of displacements and velocities due to train passages and in the transfer functions (receptances) due to hammer impacts, are encouraging that these measurements can be used to detect track damage. KW - Railway track KW - Slab track KW - Track-soil interaction KW - Field tests KW - Track damage KW - Monitoring KW - Finite element method KW - Boundary element method PY - 2017 U6 - https://doi.org/10.1016/j.trgeo.2017.06.003 SN - 2214-3912 VL - 12 IS - September SP - 1 EP - 14 PB - Elsevier CY - London AN - OPUS4-42581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Static and dynamic behaviours of isolated and unisolated ballast tracks using a fast wavenumber domain method N2 - The dynamics of un-isolated and isolated ballast tracks have been analysed by multi-beam models for the track and by a layered half-space model for the soil. The solution is calculated in frequency-wavenumber domain and transformed back to space domain by a wavenumber integral. This is a faster method compared to other detailed track-soil interaction methods and almost as fast as the widely used Winkler-soil method, especially if the compliances of the soil have been stored for repeated use. Frequency-dependent compliances and force transfer functions have been calculated for a variety of track and soil parameters. The ballast has a clear influence on the high-frequency behaviour whereas the soil is dominating the low-frequency behaviour of the track. A layering of the soil may cause a moderate track-soil resonance whereas more pronounced vehicle-track resonances occur with elastic track elements like rail pads, sleeper pads and ballast mats. Above these resonant frequencies, a reduction of the excitation forces follows as a consequence. The track deformation along the track has been analysed for the most interesting track systems. The track deformation is strongly influenced by the resonances due to layering or elastic elements. The attenuation of amplitudes and the velocity of the track-soil waves change considerably around the resonant frequencies. The track deformation due to complete trains have been calculated for different continuous and Winkler soils and compared with the measurement of a train passage showing a good agreement for the continuous soil and clear deviations for the Winkler soil model. KW - Railway track KW - Multi-beam model KW - Layered soil KW - Wavenumber method KW - Track deformation KW - Force transfer KW - Track-soil and vehicle-track resonances PY - 2017 U6 - https://doi.org/10.1007/s00419-016-1209-6 SN - 0939-1533 SN - 1432-0681 VL - 87 IS - 3 SP - 555 EP - 574 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-39080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -