TY - CONF A1 - Auersch, Lutz T1 - Bahnerschütterungen bei verschiedenen Böden und Zuggeschwindigkeiten – Messungen in Deutschland, Österreich und der Schweiz N2 - Die Bundesanstalt für Materialforschung und -prüfung hat in den letzten 30 Jahren an vielen Orten Bahnerschütterungen gemessen. Dabei wurden immer auch Versuche zur Bestimmung der Bodeneigen-schaften durchgeführt, meist mit Hammeranregung, gelegentlich auch mit Schwingeranregung. Es werden verschiedene Auswertemethoden wie Seismogramm-Montage, Spektrale Analyse (SASW), Multistation Analysis of Surface Waves (MASW), f,v-Analyse (Dispersion aus zweifacher Fourier-Analyse), Spatial AutoCorrelation (SPAC, hier auch für deterministische Quellen) vorgestellt. Durch Approximation der frequenzabhängigen Wellengeschwindigkeiten (Dispersion) oder der gemessenen Übertragungsfunktionen erhält man ein passendes Bodenmodell. Zu diesem Bodenmodell kann man dann die Übertragungsfunktionen für Hammer- und Zuganregung berechnen. Mit allgemeinen oder spezifischen Achslastspektren werden dann die Bahnerschütterungen prognostiziert und mit den Messergebnissen verglichen. Bei etlichen Messorten, insbesondere in der Schweiz, wurden deutliche Merkmale einer Bodenschichtung beobachtet. Es ergibt sich eine deutliche Reduktion der tiefen Frequenzanteile durch den steifen unterliegenden Halbraum. Die weiche Deckschicht bestimmt das hochfrequente Verhalten. Hier bewirkt die Materialdämpfung des Bodens oft einen starken Amplitudenabfall, sowohl mit der Entfernung als auch mit der Frequenz. Für den verbleibenden mittelfrequenten Anteil wurde an mehreren Messorten die Amplituden-Fahrgeschwindigkeits-Gesetzmäßigkeiten untersucht. Es gibt konstante bis stark ansteigende Amplituden, und es zeigt sich auch hier, dass der geschichtete Boden von entscheidender Bedeutung ist. T2 - 16. D-A-CH Tagung Erdbebeningenieurwesen & Baudynamik (D-A-CH 2019) CY - Innsbruck, Austria DA - 26.09.2019 KW - Zuggeschwindigkeit KW - Wellengeschwindigkeit KW - Dispersionsmessung KW - Bodenübertragungsfunktion KW - Bahnerschütterungen PY - 2019 AN - OPUS4-49445 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Wellenausbreitung in geschichteten Böden – Rechenmethoden und Messbeispiele von Zug- und Gebäudeerschütterungen N2 - Im ersten Teil werden Methoden der Wellenanalyse vorgestellt, Seismogramme, Multistation Analysis of Surface Waves (MASW), f,v-Analyse (Dispersion aus zweifacher Fourier-Analyse), Spatial AutoCorrelation (SPAC, hier auch für deterministische Quellen), und auf Messungen in Deutschland, Österreich und der Schweiz angewendet. Mit den Wellengeschwindigkeiten des Bodens werden die Berechnungsgrundlagen für die Erschütterungsausbreitung im Boden und die Bauwerk-Boden-Wechselwirkung geschaffen. Der zweite Teil beschäftigt sich mit der Wellensynthese, das heißt mit der Berechnung von Wellenfeldern (aus Wellenzahlintegralen). Die Rechnungen können wesentlich vereinfacht werden, wenn man die Dimensionsanalyse und Symmetrieüberlegungen ausnutzt, so dass maximal fünf dimensionslose Verschiebungsfunktionen verbleiben (im Vollraum sind es sogar nur zwei Verschiebungsfunktionen, die sich einfach explizit angeben lassen). Es gibt Ähnlichkeiten zwischen den Halbraum-Amplituden an der Oberfläche, den Halbraum-Amplituden in der Tiefe und der Wellenausbreitung im Vollraum. Die berechneten Wellenfelder (als Terzspektren in verschie-denen Entfernungen von der Erschütterungsquelle) werden verwendet, um die gemessene Übertragungsfunktionen des Bodens zu approximieren und Erschütterungen von Zugvorbeifahrten zu prognostizieren. Auch dies wird an einigen Messorten vorgeführt. Dabei werden einige gemessene Besonderheiten der Eisenbahnerschütterungen mit dem geschichteten Aufbau des Bodens erklärt. Der dritte Teil beschäftigt sich mit der Anwendung der Wellenfelder beziehungsweise der Punkt-lastlösungen beziehungsweise der Greenschen Funktionen in der Randelementmethode. Es wird ein einfaches Prinzip der Herleitung der Randelementmethode vorgeführt. Bei einer beliebigen Berandung benötigt man neben den Verschiebungswellenfeldern auch die Spannungswellen-felder. Eine einfache Berechnung der Spannungswellenfelder wird vorgeführt, die im Vollraum auf drei Spannungsfunktionen, ähnlich einfach wie die Verschiebungsfunktionen, führt. Durch die Kopplung der Randelementmethode mit der Finite-Element-Methode können dann Probleme der Bauwerk-Boden-Wechselwirkung gelöst werden. Der vierte Teil beschäftigt sich schließlich mit der Freifeld-Wellenanregung unter einem Gebäude und der Wellenanregung im Gebäude. Dabei geht es um die Wechselwirkung der Freifeldwellen mit starren oder flexiblen Fundamenten (Pfählen, Fundamentplatten) und den Übertragungs-faktoren zwischen dem Freifeld und dem Gebäude. Bei der Wellenanregung in einem Büro-gebäude in Wien konnten die gleichen Methoden wie bei der Wellenanregung im Boden eingesetzt werden, Seismogramme, MASW, Übertragungsfunktionen und Amplituden-Abstandsgesetze. T2 - Festkolloquium Baudynamik CY - Graz, Austria DA - 05.10.2018 KW - Dispersionsmessung KW - Wellenfeldberechnung KW - Erschütterungsprognose KW - Randelementmethode KW - Bauwerk-Boden-Wechselwirkung KW - Deckenschwingungen PY - 2018 AN - OPUS4-46403 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -