TY - CONF A1 - Auersch, Lutz ED - Cunha, A. ED - Caetano, E. ED - Ribeiro, P. ED - Müller, G. T1 - Amplification and reduction phenomena of soil-building interaction by finite-element boundary-element calculations and simplified methods N2 - Vibration of normal apartment, office and production buildings, which are excited by technically induced ground vibrations are considered. Many wavelengths of the Rayleigh waves of the soil fit into the foundation dimensions. The related high discretization effort can nowadays be realized with detailed soil-structure interaction method. The combined finite-element boundary-element method is used here as a detatiled method. Simplified method can be used with less computation time, but these methods must be calibrated by exact results. One simplification is to extent the structure to infinity and to solve the problem by wavenumber domain methods. Another simplification is the use of a Winkler soil instead of the continuous soil. Usually, the Winkler parameters are not only soil parameters but depend also on the rigid or flexible foundation structure. Substructure methods use commercial FEM software for the building part. The contribution will show some detailed and some simplified results on large structural elements such as foundation plates, walls, storey plates on columns as well as results on complete buildings. The reduction of the ground vibration by stiff elements and the amplification due to floor or building resonances are discussed which are the most important phenomena of the soil-building interaction. T2 - EURODYN 2014 - 9th International conference on structural dynamics CY - Porto, Portugal DA - 30.06.2014 KW - Soil-building interaction KW - Foundation reduction KW - Floor amplification KW - FEBEM and simplified methods PY - 2014 SN - 978-972-752-165-4 SN - 2311-9020 SP - 591 EP - 597 AN - OPUS4-31163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -