TY - JOUR A1 - Holzlöhner, Ulrich A1 - Auersch, Lutz T1 - Propagation of Shock Waves at the Surface of Heterogeneous Soil Grounds JF - International journal for numerical and analytical methods in geomechanics PY - 1984 SN - 0363-9061 SN - 1096-9853 VL - 8 IS - 1 SP - 57 EP - 70 PB - Wiley CY - London AN - OPUS4-11503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Schmid, G. T1 - A simple boundary element formulation and its application to wavefield excited soil-structure interaction JF - Earthquake engineering & structural dynamics PY - 1990 SN - 0098-8847 SN - 1096-9845 SN - 0020-7160 VL - 19 SP - 931 EP - 947 PB - Wiley CY - London AN - OPUS4-11563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir A1 - Schmid, Wolfgang A1 - Rücker, Werner T1 - Erschütterungen im Bauwesen: Messergebnisse an verschiedenen Gebäuden und eine einfache Berechnung von Fundament-, Wand- und Deckenschwingungen (Teil 1) JF - Bauingenieur PY - 2004 SN - 0005-6650 SN - 1436-4867 IS - 79 SP - 185 EP - 192 PB - Springer-VDI-Verl. CY - Düsseldorf AN - OPUS4-11507 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir A1 - Schmid, Wolfgang A1 - Rücker, Werner T1 - Erschütterungen im Bauwesen: Messergebnisse an verschiedenen Gebäuden und eine einfache Berechnung von Fundament-, Wand- und Deckenschwingungen (Teil 2) JF - Bauingenieur PY - 2004 SN - 0005-6650 SN - 1436-4867 SP - 291 EP - 299 PB - Springer-VDI-Verl. CY - Düsseldorf AN - OPUS4-11508 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir A1 - Müller, Roger T1 - Measurements on the vehicle-track interaction and the excitation of railway-induced ground vibration JF - Procedia Engineering N2 - Two railway measurement campaigns have been performed in Germany and Switzerland which yield insight in the vehicle-track-soil interaction. The campaign in Germany has included simultaneous measurement of vehicle, track, and soil vibrations during train runs with 16, 25, 40, 63, 80, 100, 125, 140, 160 km/h, and impulse measurements of the passenger car, three track sections and the soil. Two ballast tracks, one on the soil surface and one on a concrete bridge, have been investigated as well as a slab track in a tunnel. Ten different sites in Switzerland have been measured for soil properties and train-induced ground vibrations, which allow to determine the excitation forces of the railway traffic. New axle-box measurements at some of the Swiss sites have been analysed to get further experimental evidence. All these measurements have been evaluated to characterize the excitation processes. Relations between vehicle vibration and ground vibration can be observed. The vehicle vibrations, namely the accelerations of the wheelsets, yield the dynamic forces due to the passage over the irregularities of the vehicle and the track. The ground vibrations are correlated to these dynamic forces to a certain extent. Some mid-frequency ground vibration amplitudes, however, are higher than expected from the dynamic excitation forces. The experimental observations can be explained by an irregular response to the passage of the static loads, that means the passage of the static loads over an irregular ballast or soil. This correct understanding of the excitation processes is important for the prediction as well as for the mitigation of railway induced ground vibrations. T2 - X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017) KW - Vehicle-track interaction KW - Ground vibration KW - Track vibration KW - Railway measurement campaign KW - Axle box measurements PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-420889 DO - https://doi.org/10.1016/j.proeng.2017.09.390 SN - 1877-7058 VL - 199 SP - 2615 EP - 2620 PB - Elsevier CY - London AN - OPUS4-42088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Attenuation of ground vibrations due to different technical sources JF - Earthquake engineering and engineering vibration N2 - The attenuation of technically induced surface waves is studied theoretically and experimentally. In this paper, nineteen measurements of ground vibrations induced by eight different technical sources including road and rail traffic, vibratory and impulsive construction work or pile driving, explosions, hammer impulses and mass drops are described, and it is shown that the technically induced ground vibrations exhibit a power-law attenuation ν ~ r -q where the exponents q are in the range of 0.5 to 2.0 and depend on the source types. Comparisons performed demonstrate that the measured exponents are considerably higher than theoretically expected. Some potential effects on ground vibration attenuation are theoretically analyzed. The most important effect is due to the material or scattering damping. Each frequency component is attenuated exponentially as exp(-kr), but for a broad-band excitation, the sum of the exponential laws also yields a power law but with a high exponent. Additional effects are discussed, for example the dispersion of the Rayleigh wave due to soil layering, which yields an additional exponent of 0.5 in cases of impulsive loading. KW - Wave attenuation KW - Environmental vibrations KW - Field tests KW - Material damping KW - Scattering damping KW - Rayleigh wave PY - 2010 DO - https://doi.org/10.1007/s11803-010-0018-0 SN - 1671-3664 VL - 9 IS - 3 SP - 337 EP - 344 PB - Science Press CY - Beijing, China AN - OPUS4-22124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Comparison of different dispersion evaluation methods and a case history with the inversion to a soil model, related admittance functions, and the prediction of train-induced ground vibration JF - Near surface geophysics N2 - Ground vibrations due to different technical sources are analysed in theory and experiment for the dispersion of Rayleigh waves and the admittance spectra. Both tasks are theoretically based on the same concept: The admittance function in frequency–wavenumber domain yields the dispersion as its maxima, and the admittance function in space domain is obtained by integrating it over the wavenumbers. On the experimental side, many signal processing methods have been applied to many sites and have been developed by the authors in the last 35 years, i.e., time-domain methods, including the cross-correlation method, and frequency-domain methods such as the spectral analysis of surface waves with two or multiple sensors, the wavenumber-transform method, and the spatial autocorrelation method. All methods are presented by their basic formula and by at least one example site. Different sensor arrays and deterministic and stochastic sources have been tested for the spatial autocorrelation method and the wavenumber-transform method at several sites. In addition, all frequency-domain methods are presented for a specific layered site comparing their quality. The evaluated dispersion curves are very similar, but a somewhat higher frequency range has been found for the fastest method, i.e., the multi-sensor spectral-analysis-of-surface-waves method. The theoretical solutions have been used for the inversion of the measured dispersion to the soil profile of the specific layered soil. The theoretical soil model has subsequently been used to predict the ground vibration spectra of hammer and railway excitation that exhibit a good agreement with the corresponding measurements. Thus, the contribution shows the benefit of active and passive seismic methods for the prediction of railway vibration, including a new version of the spatial autocorrelation method for technical vibrations. On the other hand, technical and namely railway vibrations are considered a seismic source for the exploration of near surface soils. PY - 2015 DO - https://doi.org/10.3997/1873-0604.2015011 SN - 1569-4445 VL - 13 IS - 2 SP - 127 EP - 142 PB - EAGE - European Association of Geoscientists & Engineers CY - Houten AN - OPUS4-33836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Slab track behaviour under train passage and hammer impact – Measurements at different sites and calculated track interaction with continuous soils JF - International journal of acoustics and vibrations N2 - This contribution intends to give an overview on the vibration behaviour of slab tracks in comparison of measurements and calculations and also by comparison of different track types at more than ten different measuring sites. In theory, tracks on continuous soil are calculated by the frequency-wavenumber domain method. In experiment, geophone measurements are transformed to displacement results. Two aspects of track behaviour are considered, the frequency-dependant compliance of the track, measured by hammer impact, and the deflection under a passing axle load. In theory, the response to a single axle can be calculated, whereas in experiment, only the passage of the whole train can be measured. For comparison of theory and experiment, the calculated deflection under a single axle is superposed to get the response of the whole train. As a result, the slab track characteristics are completely different from the ballast track characteristics where each axle can be seen in the time histories. The slab track has a more global behaviour where only a whole bogie can be found in the track response and moreover, the two neighbouring bogies are not completely separated. The measurement of the different track elements (rail, sleeper, track plate, base layer) and the frequency-dependant compliances with possible resonances yield further information About the properties of the track elements. The calculations show that the soil has the dominant influence on the amplitudes and the width of the track-plate displacements. In the measurement results, the following parameters are analysed: slab track vs. ballast track, different types of slab tracks, damaged slab tracks, different trains, switches at different measuring points, voided sleepers, an elastic layer, the mortar layer, and different soils at different places. Finally, a good agreement between measured and calculated results is found for the normal and some special (damaged, floating) slab tracks. KW - Slab track KW - Train passage KW - Hammer impact KW - Compliance function KW - Track deflection PY - 2020 UR - https://iiav.org/ijav/index.php?va=viewpage&vaid=177&id_number=95 DO - https://doi.org/10.20855/ijav.2020.25.31622 SN - 1027-5851 VL - 25 IS - 3 SP - 341 EP - 354 PB - International Institute of Acoustics and Vibration CY - Gliwice AN - OPUS4-51346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Dynamic track-soil interaction – calculations and measurements about slab and ballast tracks JF - Journal of Zhejiang University-Science A N2 - The dynamic behaviour of slab and ballast tracks has been investigated by measurements and calculations. Hammer impacts and train passages have been analysed. Measurements have been performed by geophones (velocity transducers) which have been time-integrated to displacements. The calculations are done in frequency-wavenumber domain for multi-beam-on-continuous soil models. The characteristics of the different tracks and track elements have been established in theory and experiment. The frequency-dependent compliances (displacement transfer functions) show clear rail-on-rail-pad resonances or highly damped track-soil resonances. Compared to the rail and sleeper, the track plate has much lower amplitudes. The slab track has usually the highest rail amplitudes due to soft rail pads. The train passage yields track displacements which are a superposition of the axle loads from the two neighbouring axles of a bogie and from the two bogies of two neighbouring carriages. This global behaviour is characteristic for the track plate of the slab track whereas the rails of the slab and the ballast track behave more local with only one bogie of influence. The measurements agree very well with the theory of the continuous soil in case of the six measured slab tracks and acceptably well for the six measured ballast tracks. The measurements allow to find appropriate model parameters and to check the models, for example the Winkler model of the soil has been found less appropriate as it reacts more locally. KW - Slab track KW - Ballast track KW - Train passage KW - Hammer impact KW - Track-soil interaction PY - 2021 DO - https://doi.org/10.1631/jzus.A1900651 SN - 1673-565X VL - 22 IS - 1 SP - 21 EP - 36 PB - Zhejiang University Press CY - Hangzhou AN - OPUS4-52107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Romero, A. A1 - Galvín, y P. T1 - Respuesta dinámica de edificaciones producida por campos de ondas incidentes considerando la interacción suelo-estructura T1 - Building dynamic response due to incident wave field considering soil-structure interaction JF - Revista internacional de métodos numéricos para cálculo y diseño en ingeniería N2 - En este artículo se presentan 2 metodologías basadas en las formulaciones del Método de los Elementos de Contorno y del Método de los Elementos Finitos para estudiar el efecto de la interacción suelo-estructura en el comportamiento dinámico de edificaciones. Se ha estudiado la respuesta de un edificio de 3 plantas producida por un campo de ondas incidente con los 2 métodos propuestos. Los resultados obtenidos presentan un buen grado de acuerdo entre ellos. A partir de estos resultados se ha validado un modelo aproximado para estudiar este tipo de problemas y se han examinado diferentes tipologías de edificaciones. Las conclusiones alcanzadas muestran que la respuesta global de las estructuras se debe a la deformación de los forjados y depende de su superficie, de las condiciones de apoyo y del acoplamiento con los forjados de la misma planta. Del mismo modo, se ha observado un acoplamiento del comportamiento de pilares y forjados cuando las rigideces de ambos son similares.----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- This paper presents 2 methodologies based on the Boundary Element Method and the Finite Element Method to study soil-structure interaction effect on building behaviour. A 3-story building response induced by an incident wave field is studied using both methods. The results obtained show a good agreement. Then, a simplified model is validated from these methods and several buildings are analysed. Conclusions show that structural responses are due to floor deformation, and depend on their area, support conditions and coupling. A coupling between floors and columns when both elements have similar stiffness is also observed. KW - Interacción dinámica suelo-estructura KW - Resonancia en edificaciones KW - Acoplamiento Método de los Elementos de Contorno-Método de los Elementos Finitos KW - Dynamic soil-structure interaction KW - Resonant response KW - Boundary Element Method-Finite Element Method coupling PY - 2014 DO - https://doi.org/10.1016/j.rimni.2013.09.001 SN - 0213-1315 VL - 30 IS - 4 SP - 256 EP - 263 PB - Univ. CY - Barcelona AN - OPUS4-31579 LA - spa AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -