TY - JOUR A1 - Auersch, Lutz T1 - Resonances of railway bridges analysed in frequency domain by the modal-force-excitation, bridge-transfer and axle-sequence spectra N2 - In this article, the passage of different trains over different bridges will be studied for resonant excitation. The intensity of the resonance will be estimated in frequency domain by using three separated spectra. At first, the excitation spectrum of the modal forces is built by the mode shape and the passage time of the train over the bridge. The second spectrum is the frequency response function of the bridge which include the modal frequency, damping and mass. The third part is the spectrum of the axle sequence of the train. The influences of train speed, bridge length, bridge support, track irregularities, and train type on the resonance amplitudes will be analysed for each of these spectra separately for getting a better insight. A variety of axle-sequence spectra and corresponding rules will be presented for different vehicles and trains. As examples, the passage of a slow freight train over a long-span bridge, a normal passenger train over a medium-span bridge, and a high-speed train over a short bridge will be analysed. Corresponding measurements show the amplification, but also the cancellation of the subsequent axle responses. Namely in one of the measurement examples, the first mode of the bridge was amplified and the second mode was cancelled at a low speed of the train and vice versa at a higher speed. KW - Railway bridge KW - Bridge vibration KW - Train passage KW - Axle sequence KW - Resonance KW - Cancellation KW - Fequency domain PY - 2021 DO - https://doi.org/10.1016/j.engstruct.2021.113282 SN - 0141-0296 VL - 249 SP - 1 EP - 9 PB - Elsevier Ltd. CY - London AN - OPUS4-53766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - The role of vehicle dynamics in train-induced ground vibrations and the detection of irregular axle-pulse responses due to a varying track support stiffness N2 - Train-induced ground vibrations are all generated by the vehicle, by static or dynamic vehicle loads. The most important and most accepted excitation are the dynamic wheel loads from the passage over track irregularities. Dynamic wheel loads will be compared from parallel axle-box and ground vibration measurements at more than seven sites. Some low-frequency excitation of ground vibrations, typically between 10 and 30 Hz, cannot be found in the axle-box measurements. Therefore, other vehicle modes, such as rigid bogie modes, flexible carriage modes, rigid and flexible wheelset modes, have been analysed for additional excitation forces. These vehicle dynamics analyses give an explanation for higher axle-box results at high frequencies, but not for the excitation of the higher low-frequency ground-vibration component. Finally, the effect of the moving static train loads will be analysed. For a regular track and soil, the moving static train loads yield the quasi-static response which exists only in the low-frequency nearfield of the track. If the support stiffness is randomly varying along the track, the pulses on the track generate an additional low-frequency component which is called the irregular pulse responses. This component will be demonstrated by numerical analysis where all axle pulses are superposed in frequency domain. KW - Wheelset KW - Vehicle-track interaction KW - Rail roughness KW - Random dynamics and vibrations KW - Modal analysis PY - 2022 DO - https://doi.org/10.1177/09544097221086064 SN - 0954-4097 VL - 236 IS - 10 SP - 1218 EP - 1233 PB - Sage CY - London AN - OPUS4-55000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Different types of continuous track irregularities as sources of train-induced ground vibration and the importance of the random variation of the track support N2 - Irregularities of the track are a main cause of train-induced ground vibration, and track maintenance is of great importance. Although geometric irregularities at the wheel-rail contact are widely used, other types of irregularities, such as stiffness irregularities, irregularities from different track positions and irregularities in the wave propagation, were analysed in the present study. The track behaviour was investigated by a multi-beam-on-soil model. This track model is coupled with a vehicle model to calculate the vehicle–track interaction. The track model was also used for the track filtering, which transfers a track support error to the equivalent rail irregularity or, conversely, the sharp axle pulse on the rail to a smoother pulse on the soil. In the case in which this filtering varies randomly along the track, the pulses of the moving static load induce a certain ground Vibration component (“the scatter of axle pulses”). This effect was calculated by the superposition of axle pulses in the frequency domain and by a stochastic simulation. Simultaneous vehicle, track and soil measurements at a certain site were used to evaluate the different excitation and ground Vibration components. The agreement between calculations and axle-box and soil measurements is good. The ground vibrations calculated from rail irregularities and corresponding dynamic loads, however, clearly underestimate the measured ground vibration amplitudes. Only the static load that is moving over a varying track support stiffness can produce the important mid-frequency ground Vibration component by the scatter of axle pulses. KW - Train-induced ground vibration KW - Geometric vehicle and track irregularities KW - Stiffness variation KW - Multi-beam track model KW - Track filtering KW - Dynamic axle loads KW - Static axle loads KW - layered soil PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543846 DO - https://doi.org/10.3390/app12031463 SN - 2076-3417 VL - 12 IS - 3 SP - 1 EP - 22 PB - MDPI CY - Basel AN - OPUS4-54384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Track-soil dynamics – calculation and measurement of damaged and repaired slab tracks N2 - The damage detection and repair control have become important tasks for ballast and slab tracks. Measurements which compare the damaged and the repaired status of the same track section at different times, or which compare a damaged and an intact track section at the same time, have been successfully performed at some sites in Germany. The loss of contact between the sleeper and the track plate, between the track plate and the base plate, and between the base plate and the base layer have been analysed. The soil properties of each site have been measured and have been used to establish realistic track-soil models. Theoretical results of the wavenumber domain and the finite-element boundary element method have been compared with the experimental results. The observed experimental and theoretical results, changes in the time histories of displacements and velocities due to train passages and in the transfer functions (receptances) due to hammer impacts, are encouraging that these measurements can be used to detect track damage. KW - Railway track KW - Slab track KW - Track-soil interaction KW - Field tests KW - Track damage KW - Monitoring KW - Finite element method KW - Boundary element method PY - 2017 DO - https://doi.org/10.1016/j.trgeo.2017.06.003 SN - 2214-3912 VL - 12 IS - September SP - 1 EP - 14 PB - Elsevier CY - London AN - OPUS4-42581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Excitation of ground vibration due to the passage of trains over a track with trackbed irregularities and a varying support stiffness N2 - Train-induced ground vibration can be excited by wheel and track irregularities and by two kinds of irregularities of the soil, by geometric irregularities or by the spatially varying soil stiffness. For both types of irregularities, the effective track irregularity on top of the track is calculated in wavenumber domain and with wavenumber integrals. For a general multi-beam track model, the wavenumber integrals are solved numerically. The irregularities of the soil are filtered by the track when transferred from the bottom to the top of the track. The high-wavenumber irregularities are strongly reduced due to the bending stiffness of the track and the compliance of the support. In addition, soft track elements reduce directly the stiffness variation of the support. Therefore, the mitigation effect of elastic track elements for these excitation components seems to be important. For under-sleeper pads and slab tracks, calculation and measurements are presented including additional excitation components and the dynamic vehicle–track interaction, and the relevance of the excitation mechanisms is discussed based on the dynamic forces which are acting on the ground. Due to the restricted amplitudes, the parametric excitation by the stiffness variation seems to be less important than the geometric irregularities. The calculations yield the correct trends of the measurements and many details of the measured ballast, slab, and under-sleeper-pad tracks. KW - Varying track stiffness KW - Geometric trackbed irregularities KW - Multi-beam-on-support model KW - Elastic track elements KW - Parametric excitation PY - 2015 DO - https://doi.org/10.1080/00423114.2014.968173 SN - 0042-3114 VL - 53 IS - 1 SP - 1 EP - 29 PB - Taylor & Francis CY - Basingstoke, Hants. AN - OPUS4-33032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Train induced ground vibrations: different amplitude-speed relations for two layered soils N2 - Ground vibrations created by running high-speed trains at speeds between 100 and 320 km/h are calculated in detail using transfer functions to model the effects of the moving loads. These transfer functions for layered soils are obtained by integration in the wavenumber domain. The train-induced vibrations in a soil that is considered to consist of single layers of two slightly different soils are analysed for different excitations: for their spectra, attenuation laws and amplitude-speed relations. An important mid-frequency component is shifted through the cut-on region of the layered soil with an increase in the train speed. The cut-on frequency divides the response of the layered soil into a low-frequency low-amplitude range and a high-frequency high-amplitude range. This leads to completely different train speed dependencies for the two soil layers with strongly increasing amplitudes around the cut-on frequency and almost constant amplitudes beyond this frequency. All calculated results closely agree with ground vibration measurements at two corresponding sites, especially if the mid-frequency component is calculated by axle impulses. KW - Ground vibration KW - Layered soil KW - Wavenumber integrals KW - Moving load KW - Excitation forces KW - High-speed trains KW - Measured railway vibrations PY - 2012 DO - https://doi.org/10.1177/0954409712437305 SN - 0954-4097 VL - 226 IS - 5 SP - 469 EP - 488 PB - Sage Publ. CY - London AN - OPUS4-31162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - The use and validation of measured, theoretical, and approximate point-load solutions for the prediction of train-induced vibration in homogeneous and inhomogeneous soils N2 - The layered soil is calculated in the frequency wavenumber domain and the solutions for fixed or moving point or track loads follow as wavenumber integrals. The resulting point load solutions can be approximated by simple formula. Measurements yield the specific soil parameters for the theoretical or approximate solutions, but they can also directly provide the point-load solution (the transfer function of that site). A prediction method for the train-induced ground vibration has been developed, based on one of these site-specific transfer functions. The ground vibrations strongly depend on the regular and irregular inhomogeneity of the soil. The regular layering of the soil yields a cut-on and a resonance phenomenon, while the irregular inhomogeneity seems to be important for high-speed trains. The attenuations with the distance of the ground vibration, due to point-like excitations such as vibrator, hammer, or train-track excitations, were investigated and compared. All theoretical results were compared with measurements at conventional and high-speed railway lines, validating the approximate prediction method. PY - 2014 SN - 1027-5851 VL - 19 IS - 1 SP - 52 EP - 64 CY - St. Petersburg, Russia AN - OPUS4-30494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Static and dynamic behaviours of isolated and unisolated ballast tracks using a fast wavenumber domain method N2 - The dynamics of un-isolated and isolated ballast tracks have been analysed by multi-beam models for the track and by a layered half-space model for the soil. The solution is calculated in frequency-wavenumber domain and transformed back to space domain by a wavenumber integral. This is a faster method compared to other detailed track-soil interaction methods and almost as fast as the widely used Winkler-soil method, especially if the compliances of the soil have been stored for repeated use. Frequency-dependent compliances and force transfer functions have been calculated for a variety of track and soil parameters. The ballast has a clear influence on the high-frequency behaviour whereas the soil is dominating the low-frequency behaviour of the track. A layering of the soil may cause a moderate track-soil resonance whereas more pronounced vehicle-track resonances occur with elastic track elements like rail pads, sleeper pads and ballast mats. Above these resonant frequencies, a reduction of the excitation forces follows as a consequence. The track deformation along the track has been analysed for the most interesting track systems. The track deformation is strongly influenced by the resonances due to layering or elastic elements. The attenuation of amplitudes and the velocity of the track-soil waves change considerably around the resonant frequencies. The track deformation due to complete trains have been calculated for different continuous and Winkler soils and compared with the measurement of a train passage showing a good agreement for the continuous soil and clear deviations for the Winkler soil model. KW - Railway track KW - Multi-beam model KW - Layered soil KW - Wavenumber method KW - Track deformation KW - Force transfer KW - Track-soil and vehicle-track resonances PY - 2017 DO - https://doi.org/10.1007/s00419-016-1209-6 SN - 0939-1533 SN - 1432-0681 VL - 87 IS - 3 SP - 555 EP - 574 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-39080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Vibrations of soil and foundation due to railway, blast and impact loading N2 - The vibrations of soil and foundations are demonstrated for different types of loading. Train-induced ground vibrations are studied in a measurement campaign where a test train has run with regularly varied speeds. The measured train-induced soil vibration at 2 to 100 m distance from the track is compared with the wave propagation due to hammer excitation and with the theoretical wave field. The strong influence of the soil and the train speed on the amplitudes and frequencies of the vibration has been analysed for passages of the locomotive and the carriages. - The generation of ground vibration by strong explosions has been studied on a large testing area with sandy soil. The propagating waves were measured in a regular grid of measuring points in 10 to 1000 m. Therefore, the dominance of certain waves at certain distances and the changes of compressional waves and Rayleigh waves could clearly be observed. The results are compared with impulse hammer measurements in the range of 5 to 50 m. - A drop test facility has been built on the testing area of the Federal Institute of Materials Research and Testing (BAM). Heavy masses (containers) of up to 200 t can be dropped from 10 m height on a big reinforced concrete foundation. The foundation was instrumented by accelerometers, strain gauges and pressure cells to give information about the loading condition and by geophones to measure the vibration of the surrounding soil and building. Both excitation processes, the release of the mass and the impact, produce high vibration amplitudes. On a smaller drop foundation, the influence of the drop height and the target stiffness has been studied more systematically. KW - Ground vibration KW - Train passage KW - Explosion KW - Mass drop KW - Amplitude-distance law KW - Filter effect of the soil KW - Train speed KW - Blasting charge KW - Drop height KW - Target stiffness PY - 2016 SN - 2409-4579 VL - 3 IS - 1 SP - 27 EP - 38 PB - Samara State Aerospace University CY - Samara AN - OPUS4-38816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Emission of train-induced ground vibration — Prediction of axle-load spectra and its experimental verification N2 - Train passages induce forces on the track, train-induced vibrations propagate through the soil and excite neighbouring buildings. The emission, which is the first part of the prediction of vibrations near railway lines, is presented by focusing on the dynamic axle loads. The calculation of the axle loads is based on the vehicle-track-soil interaction. This interaction calculus utilises the dynamic stiffness of the vehicle (the inertia of the wheelset) and the dynamic stiffness of the track-soil system. Based on various time consuming finite-element boundary-element calculations, an approximate track-soil model has been established. The vehicle-track-soil analysis yields several transfer functions between the various geometric or stiffness irregularities and the axle loads of the train. Geometric irregularities of the vehicle (the wheels) and the track (rail surface and track alignment) are the simplest components. Geometric irregularities of the subsoil (trackbed irregularities) have to be transferred to effective irregularities at rail level. The bending stiffness of the track is filtering out the short-wavelength contribution. Stiffness irregularities occur due to random variations in the ballast or the subsoil, which must also be transferred to effective track irregularities, and due to the discrete rail support on sleepers. All necessary transfer functions for the prediction of axle-load spectra are presented as general formula and as specific graphs for differing vehicle and track parameters. The prediction method is applied to a ballast track and a slab track and compared with corresponding axle-box measurements. Moreover, ground vibration measurements at numerous sites are exploited for the axle-load spectra and the validation of the prediction method. All theoretical and experimental results confirm that the dynamic axle-load spectra have an approximate value of 1 kN per third of octave and increase with train speed, track stiffness and around the vehicle-track resonance. KW - Train induced ground vibration KW - Prediction KW - Emission KW - Axle-load spectra KW - Experimental verification PY - 2017 DO - https://doi.org/10.20855/ijav.2017.22.1453 SN - 1027-5851 VL - 22 IS - 1 SP - 74 EP - 83 PB - Institute of Acoustics and Vibration CY - Auburn, USA AN - OPUS4-39445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -