TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Krome, Fabian A1 - Prager, Jens T1 - Effiziente Modellierung von geführten Wellen mit der Scaled Boundary Finite Elemente Methode und deren Anwendung für Composite-Druckbehälter N2 - Die Scaled Boundary Finite Elemente Methode (SBFEM) ist eine semi-analytische Methode, die speziell für Modellierung von geführten Wellen weiterentwickelt und optimiert wurde. Da nur den Rand der Rechendomäne diskretisiert wird, hat die SBFEM einen geringen Rechenaufwand. In diesem Beitrag wird die SBFEM benutzt, um die Ausbreitung geführter Wellen in einer Metall-Faserverbund-Werkstoffstruktur zu analysieren. Mittels der SBFEM ist es möglich, verschiede Fehlertypen, z.B. Ermüdungsrisse, Poren, Delaminationen, Korrosion, in das numerische Modell zu integrieren und damit Defekt-Mode-Wechselwirkung zu analysieren. Die Ergebnisse wurden für die Entwicklung einer Methode zur Zustandsüberwachung von Composite-Druckbehältern verwendet. T2 - DGZfP-Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Wasserstoffspeicher KW - Automobilindustrie KW - Kohlenstofffaserverstärkter Kunststoff KW - Hybrid Materialien PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-449797 SP - 1 EP - 4 AN - OPUS4-44979 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya T1 - Effiziente Modellierung von geführten Wellen mit der Scaled Boundary Finite Elemente Methode und deren Anwendung für Composite-Druckbehälter N2 - Die Scaled Boundary Finite Elemente Methode (SBFEM) ist eine semi-analytische Methode, die speziell für Modellierung von geführten Wellen weiterentwickelt und optimiert wurde. Da nur den Rand der Rechendomäne diskretisiert wird, hat die SBFEM einen geringen Rechenaufwand. In diesem Beitrag wird die SBFEM benutzt, um die Ausbreitung geführter Wellen in einer Metall-Faserverbund-Werkstoffstruktur zu analysieren. Mittels der SBFEM ist es möglich, verschiede Fehlertypen, z.B. Ermüdungsrisse, Poren, Delaminationen, Korrosion, in das numerische Modell zu integrieren und damit Defekt-Mode-Wechselwirkung zu analysieren. Die Ergebnisse wurden für die Entwicklung einer Methode zur Zustandsüberwachung von Composite-Druckbehältern verwendet. T2 - DGZfP-Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Wasserstoffspeicher KW - Automobilindustrie KW - Kohlenstofffaserverstärkter Kunststoff KW - Hybrid Materialien PY - 2018 AN - OPUS4-44980 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya T1 - Entwicklung von Verfahren zur wiederkehrenden Prüfung und zur Zustandsüberwachung von Composite-Druckbehältern N2 - Composite-Druckbehälter werden für Speicherung und Transport von Gasen unter hohem Druck verwendet. Durch die gewichtssparende Struktur, die aus einem dünnwandigem Metallgefäß und Faserverbundwerkstoff-Ummantelung besteht, sind solche Behälter insbesondere für die Automobilindustrie interessant, z.B. als Wasserstoffspeicher. Die Druckprüfung ist ein konventioneller Test, um die Integrität von Metalldruckbehältern zu bewerten. Im Falle des Composite-Druckbehälters könne eine solche Prüfung jedoch den Faserverbundwerkstoff überbeanspruchen und somit die verbleibende Lebensdauer der getesteten Komponente verringern. Infolgedessen, es ist notwendig, die Verfahren zur zerstörungsfreie Prüfung und möglicherweise zur Zustandsüberwachung von Composite-Druckbehältern zu entwickeln. Unser Vorgehen verwendet geführte Ultraschallwellen und hat das Potenzial, kritische Schäden wie Risse im Metall, Faserbrüche und Matrixrisse in Faserverbundwerkstoff zu detektieren. In diesem Beitrag wurde die Finite Elemente Methode benutzt, um die multimodale, geführte Wellenausbreitung in einer Metall-Faserverbundwerkstoffstruktur zu analysieren. Dadurch wurden die geeigneten Wellenmoden identifiziert und deren Wechselwirkung mit verschiedenen Fehlertypen analysiert. Diese Kenntnisse sollen für die Entwicklung von Verfahren zur wiederkehrenden Prüfung und zur Zustandsüberwachung von Composite-Druckbehältern angewendet werden. T2 - Seminar des FA Ultraschall CY - Berlin, Germany DA - 06.11.2017 KW - Composite-Druckbehälter KW - Geführte Ultraschallwellen KW - Structural health monitoring KW - Finite element modelling KW - Wasserstoffspeicher PY - 2017 AN - OPUS4-42751 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Prager, Jens A1 - Boller, C. T1 - Efficient modelling of guided ultrasonic waves using the Scaled Boundary FEM towards SHM of composite pressure vessels N2 - The Scaled Boundary Finite Element Method (SBFEM) is a semi-analytical method that shows promising results in modelling of guided ultrasonic waves. Efficiency and low computational cost of the method are achieved by a discretisation of the boundary of a computational domain only, whereas for the domain itself the analytical solution is used. By means of the SBFEM different types of defects, e.g. cracks, pores, delamination, corrosion, integrated into a structure consisting of anisotropic and isotropic materials can be modelled. In this contribution, the SBFEM is used to analyse the propagation of guided waves in a structure consisting of an isotropic metal bonded to anisotropic carbon fibre reinforced material. The method allows appropriate wave types (modes) to be identified and to analyse their interaction with different defects. Results obtained are used to develop a structural health monitoring system for composite pressure vessels used in automotive and aerospace industries. T2 - 9th European Workshop on Structural Health Monitoring (EWSHM) CY - Manchester, UK DA - 10.07.2018 KW - Structural Health Monitoring KW - Pressure tanks KW - Hydrogen storage KW - Finite Element Modelling KW - Composites PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-454859 SP - 1 EP - 7 AN - OPUS4-45485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Held, Mathias A1 - Bulling, Jannis A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens T1 - Determination of isotropic elastic constants from dispersion images based on ultrasonic guided waves by using neural networks N2 - This article presents a method to use the dispersive behavior of ultrasonic guided waves and neural networks to determine the isotropic elastic constants of plate-like structures through dispersion images. Therefore, two different architectures are compared: one using convolutions and transfer learning based on the EfficientNetB7 and a Vision Transformer-like approach. To accomplish this, simulated and measured dispersion images are generated, where the first is applied to design, train, and validate and the second to test the neural networks. During the training of the neural networks, distinct data augmentation layers are employed to introduce artifacts appearing in measurement data into the simulated data. The neural networks can extrapolate from simulated to measured data using these layers. The trained neural networks are assessed using dispersion images from seven known material samples. Multiple variations of the measured dispersion images are tested to guarantee the prediction stability. The study demonstrates that neural networks can learn to predict the isotropic elastic constants from measured dispersion images using only simulated dispersion images for training and validation without needing an initial guess or manual feature extraction, independent of the measurement setup. Furthermore, the suitability of the different architectures for generating information from dispersion images in general is discussed. KW - Ultrasonic guided waves KW - Dispersion KW - Elastic constants KW - Neural networks KW - Image processing KW - Vision transformer PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607090 DO - https://doi.org/10.1016/j.ultras.2024.107403 SN - 0041-624X VL - 143 SP - 1 EP - 48 PB - Elsevier B.V. AN - OPUS4-60709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens T1 - Structural health monitoring of composite pressure vessels using guided ultrasonic waves N2 - Composite pressure vessels are important components for storing gases under high pressure. Beside others, a common type of pressure vessel is made of a metal liner overwrapped with a fibre reinforced plastic material. Conventional hydrostatic tests, used to assess the integrity of pressure vessels, may overstress the material, and thus, may reduce the remaining life-time of the tested component. Therefore, a truly nondestructive structural health monitoring (SHM) system would not only allow to ensure a safer usage and extended life-time, but also to exclude the necessity of the periodic inspection and testing of pressure vessels. We propose to use guided ultrasonic waves which have a potential to detect the main damage types such as cracking in the metal liner, fibre breaks and composite Matrix delamination. For designing such a SHM system, the multimodal ultrasonic wave propagation and the defect-mode interaction must be fully understood. In this contribution, we present simulation results obtained by means of finite element modelling. Based on the findings, suggestions about appropriate wave modes, their interaction with different flaw types as well as the necessary excitation and suitable sensor configuration are made. Finally, we suggest a first approach of a reliable SHM system for composite pressure vessels. T2 - First World Congress on Condition Monitoring (WCCM) CY - London, UK DA - 13.06.2017 KW - Composite materials KW - Simulations KW - Ultrasonic testing PY - 2017 SP - 1 EP - 12 AN - OPUS4-40678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya T1 - Structural health monitoring of composite pressure vessels using guided ultrasonic waves N2 - Composite pressure vessels are important components for storing gases under high pressure. Beside others, a common type of pressure vessel is made of a metal liner overwrapped with a fibre reinforced plastic material. Conventional hydrostatic tests, used to assess the integrity of pressure vessels, may overstress the material, and thus, may reduce the remaining life-time of the tested component. Therefore, a truly nondestructive structural health monitoring (SHM) system would not only allow to ensure a safer usage and extended life-time, but also to exclude the necessity of the periodic inspection and testing of pressure vessels. We propose to use guided ultrasonic waves which have a potential to detect the main damage types such as cracking in the metal liner, fibre breaks and composite Matrix delamination. For designing such a SHM system, the multimodal ultrasonic wave propagation and the defect-mode interaction must be fully understood. In this contribution, we present simulation results obtained by means of finite element modelling. Based on the findings, suggestions about appropriate wave modes, their interaction with different flaw types as well as the necessary excitation and suitable sensor configuration are made. Finally, we suggest a first approach of a reliable SHM system for composite pressure vessels. T2 - First World Congress on Condition Monitoring (WCCM) CY - London, UK DA - 13.06.2017 KW - Composite materials KW - Simulations KW - Ultrasonic testing PY - 2017 AN - OPUS4-40679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nicolai, Marcel A1 - Bulling, Jannis A1 - Lugovtsova, Yevgeniya A1 - Zeipert, Henning A1 - Prager, Jens A1 - Henning, Bernd ED - van Keulen, Wim ED - Kok, Jim T1 - On the repulsion effect of coupled Lamb wave modes N2 - Lamb waves, recognized for their significance in material characterisation, structural health monitor-ing, and non-destructive testing, exhibit complex behaviours that are crucial for industrial applica-tions. This paper delves into the mathematical and physical principals of the repulsion effect that can be observed in the dispersion curves of coupled Lamb wave modes. This effect is the result from the mechanical coupling of thin-walled solid plates and prevents the crossing of the dispersion curves. The study employs the Scaled Boundary Finite Element Method to calculate the dispersion curves of coupled plates and to simulate their interaction for a weak and ideal coupling. Through a mathemati-cal framework and a physical analogy with simple harmonic oscillators, the paper elucidates the un-derlying principals of this effect. Furthermore, the paper highlights the practical significance of the repulsion effect in Lamb waves, suggesting its application for testing and monitoring the integrity of multi-layer structures like adhesive bonds, which are important for various industrial applications. A deepened understanding of this effect could contribute to the enhancement of non-destructive evalua-tion techniques. T2 - ICSV 2024 CY - Amsterdam, The Netherlands DA - 08.07.2024 KW - Scaled Boundary Finite Element Method (SBFEM) KW - Lamb waves KW - Mode repulsion KW - Mechanical coupling KW - Dispersion curves PY - 2024 SN - 978-90-90-39058-1 SN - 2329-3675 SP - 410 EP - 418 PB - The International Institute of Acoustics and Vibration (IIAV) CY - Amsterdam AN - OPUS4-62855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nicolai, Marcel A1 - Bulling, Jannis A1 - Lugovtsova, Yevgeniya A1 - Zeipert, Henning A1 - Prager, Jens A1 - Henning, Bernd T1 - On the repulsion effect of coupled Lamb wave modes N2 - This work investigates the phenomenon of mode repulsion in coupled Lamb wave systems. By mechanically coupling two dissimilar plates using spring elements, it is shown that previously intersecting Lamb wave modes are repelled, avoiding any crossing in the dispersion curves. The effect, rooted in eigenvalue theory and first observed in quantum systems, is explained through both mathematical models and classical analogies with coupled harmonic oscillators. Numerical simulations using the Scaled Boundary Finite Element Method validate the theoretical predictions, revealing a correlation between strain distribution and frequency splitting. The observed mode repulsion provides new insights into interface properties and offers potential for applications such as monitoring adhesive degradation in layered structures. T2 - DAGA 2024 CY - Hannover, Germany DA - 18.03.2024 KW - Scaled Boundary Finite Element Method (SBFEM) KW - Lamb waves KW - Mode repulsion KW - Mechanical coupling KW - Dispersion curves PY - 2024 SP - 632 EP - 635 AN - OPUS4-62854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Lugovtsova, Yevgeniya T1 - Damage detection in multi-layered plates using ultrasonic guided waves N2 - This thesis investigates ultrasonic guided waves (GW) in multi-layered plates with the focus on higher order modes. The aim is to develop techniques for hybrid structures such as of adhesive bonds and composite pressure vessels (COPV) which are widely used in automotive and aerospace industries and are still challenging to inspect non-destructively. To be able to analyse GW, numerical methods and precise material properties are required. For this purpose, an efficient semi-analytical approach, the Scaled Boundary Finite Element Method, is used. The material properties are inferred by a GW-based optimisation procedure and a sensitivity study is performed to demonstrate the influence of properties on GW. Then, an interesting feature, called mode repulsion, is investigated with respect to weak and strong adhesive bonds. The results show that the coupling between two layers influences the distance between coupled modes in a mode repulsion region, thus allowing for the characterisation of adhesive bonds. At next, wave-damage interaction is studied in the hybrid structure as of the COPV. Results show that the wave energy can be concentrated in a certain layer enabling damage localisation within different layers. Further investigations are carried out on the hybrid plate with an impact-induced damage. Two well-known wavenumber mapping techniques, which allow to quantify the damage in three dimensions, are implemented and their comparison is done for the first time. KW - Lamb waves KW - Composites KW - Structural Health Monitoring KW - Inverse procedure KW - Scaled Boundary Finite Element Method PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:bsz:291--ds-382863 DO - https://doi.org/10.22028/D291-38286 SP - 1 EP - 131 PB - SciDok - Der Wissenschaftsserver der Universität des Saarlandes CY - Saarbrücken, Germany AN - OPUS4-57058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -