TY - CONF A1 - Schmidt, Wolfram A1 - Weba, Luciana A1 - Silbernagl, Dorothee A1 - Mota Gassó, Berta A1 - Höhne, Patrick A1 - Sturm, Heinz A1 - Pauli, Jutta A1 - Resch-Genger, Ute A1 - Steinborn, Gabriele ED - Khayat, Kamal Henry T1 - Influences of nano effects on the flow phenomena of self-compacting concrete N2 - Chemical admixtures like superplasticisers or stabilising agents are of ever increasing importance for modern concrete technology. They liberate the workability of concrete from its dependency on water content, and thus, open the gate towards innovative and future oriented concrete technologies such as selfcompacting concrete. Meanwhile admixtures have become common practice in concrete technology, but the understanding of these highly complex polymers in the entire concrete system lags far behind their application. Due to its complex time-dependent, multi-phase and multi-scale behaviour, flowable concrete systems are highly complicated and cannot be described comprehensively by simple models. It is therefore extremely challenging to identify the relevant parameters that predominantly control flow phenomena on different size scales, since these may occur on any scale between the nano scale (e.g. superplasticizer adsorption) and macro scale (e.g. grading of the aggregates). The present study discusses fundamental mechanisms at the interface between particle or hydrate surfaces and the fluid phase at a very early stage of concrete formation, and links these effects to macroscopic flow phenomena. Methods are discussed that appear promising interdisciplinary tools for enhancement of the understanding of the relevant interactions that are responsible for the macroscopic flow of flowable concrete. T2 - 8th International RILEM Symposium on Self-Compacting Concrete CY - Washington, D.C., USA DA - 15.05.2016 KW - Adsorption KW - Analytics KW - Hydration KW - Polycarboxylate ether KW - Rheology PY - 2016 SP - 245 EP - 254 AN - OPUS4-36882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -