TY - JOUR A1 - Ferraioli, M. A1 - Miccoli, Lorenzo A1 - Abruzzese, D. T1 - Dynamic characterisation of historic bell-tower using a sensitivity-based technique for model tuning JF - Journal of Civil Structural Health Monitoring N2 - The most relevant results of the vibration-based investigations performed on a historic masonry tower in Italy namely the Santa Maria a Vico bell-tower is here presented. The first part of the study involves preliminary full-scale ambient vibration measurements in operational conditions and dynamics-based finite element (FE) modelling. At first, a manual tuning of the uncertain parameters of the model was carried out to adjust material properties, soil-structure interaction and constraining effect of the neighbouring structures. Then, based on the sensitivity analysis, only the most sensitive parameters were chosen as updating parameters. Finally, a model updating technique based on a sensitivity-based method was used to minimise the error between experimental vibration data and numerical response values. To this aim, a residual vector defined as the weighted difference between the measured quantities and calculated quantities was used. The uncertain structural parameters of the FE model were identified by minimising a robust penalty function. The calibrated model was used as an important tool for the seismic assessment of the structure using pushover analysis. Since the assumed value of the masonry compressive strength is the most sensitive parameter of non-linear behaviour, a sensitivity analysis was performed considering reference values in the range of interest. The seismic safety corresponding to increasing levels of the seismic hazard was finally investigated. KW - Masonry tower KW - Ambient vibration measurements KW - Structural identification KW - Model tuning PY - 2018 DO - https://doi.org/10.1007/s13349-018-0272-9 SN - 2190-5479 SP - 1 EP - 17 PB - Springer-Verlag GmbH CY - Germany AN - OPUS4-44161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fontana, Patrick A1 - Miccoli, Lorenzo A1 - Grünberg, U. T1 - Experimental investigations on the initial shear strength of masonry with earth mortars JF - International Journal of Masonry Research and Innovation N2 - In this paper, a comparative study on the initial shear strength of masonry with earth mortars is presented. Triplet tests were carried out to characterise the shear bond strength of five different types of earth mortar, three purely mineral and two with vegetable additives (wood and straw chaff), using calcium silicate blocks. In spite of their lower bulk densities, mortars with chaffs reached a value of compressive strength comparable to the values shown by the purely mineral mortars. The characteristic initial shear strengths of all the tested earth mortars were between two and five times higher than the minimum values for initial shear strengths required by standards. To assess the influence of blocks pre-wetting, a comparison between calcium silicate blocks and earth blocks was performed to evaluate the results obtained from the standard test procedure compared to the more common practice of using earth mortars in combination with earthen blocks. KW - Earth mortar KW - Sand-lime block KW - Earth block KW - Initial shear strength KW - Shear bond test KW - Masonry KW - Triplet test PY - 2018 DO - https://doi.org/10.1504/IJMRI.2018.10009831 SN - 2056-9459 SN - 2056-9467 VL - 3 IS - 1 SP - 34 EP - 49 PB - Inderscience Enterprises Ltd. CY - Olney, Bucks AN - OPUS4-43692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Silveira, D. A1 - Oliveira, C. A1 - Varum, H. A1 - Ioannou, I. A1 - Miccoli, Lorenzo A1 - Tarque, N. A1 - Parisi, F. A1 - Fenu, L. A1 - Solis, M. A1 - Rodriguez-Mariscal, J. D. ED - Varum, H. ED - Parisi, F. ED - Tarque, N. ED - Silveira, D. T1 - Mechanical Characterization of Adobe Bricks T2 - Building Pathology and Rehabilitation, Structural Characterization and Seismic Retrofitting of Adobe Constructions, Experimental and Numerical Developments N2 - The mechanical characterization of adobe bricks is an important first step in the study of the behaviour of adobe masonry. For this reason, in the last decades, different authors have conducted research on the mechanical behaviour of adobes from various regions of the world. Despite the importance of mechanical characterization, there are still only a few standards and normative documents with clear indications for the mechanical testing of earthen materials and, in general, These indications are not thorough and vary among different countries. Consequently, authors tend to adopt different types of test specimens and procedures in their experimental work, thus obtaining results that are not directly comparable. The fact that the materials and procedures traditionally used are also not standardized,varying greatly from region to region, also contributes to the difficulty of comparing results from different studies. This chapter presents a review of the indications provided by codes, standards and other technical recommendations for the mechanical testing of adobe bricks, as well as a detailed review of procedures adopted, and results obtained by different authors regarding the mechanical characterization of traditional adobe bricks. This chapter focuses, in particular, on the behaviour of adobe bricks when subjected to simple compression. It provides an overview of the existing knowledge and identifies needs for future research and development. KW - Adobe KW - Adobe masonry KW - Mechanical behaviour KW - Test procedures KW - Standards PY - 2021 SN - 978-3-030-74736-7 DO - https://doi.org/10.1007/978-3-030-74737-4 SN - 2194-9832 VL - 20 SP - 35 EP - 54 PB - Springer Nature Switzerland AG AN - OPUS4-54170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Oliveira, C. A1 - Silveira, D. A1 - Varum, H. A1 - Parisi, F. A1 - Miccoli, Lorenzo A1 - Solis, M. A1 - Rodriguez-Mariscal, J. D. A1 - Tarque, N. ED - Varum, H. ED - Parisi, F. ED - Tarque, N. ED - Silveira, D. T1 - Mechanical Characterization of Adobe Masonry T2 - Building Pathology and Rehabilitation, Structural Characterization and Seismic Retrofitting of Adobe Constructions, Experimental and Numerical Developments N2 - The characterization of the mechanical properties and behaviour of adobe masonry is fundamental for the understanding of the structural behaviour of adobe constructions. Thus, in the last decades, experimental studies focused on this topic have been carried out by different authors. Many of the existing experimental works, however, were carried out aiming to support broader studies focused on the seismic behaviour of adobe constructions and are not very detailed. Moreover, authors tend to adopt different procedures in their experimental work, since there are few indications in existing standards for testing adobe masonry. The wide variety in materials used, both for the adobes and mortars, further complicates this work, making it difficult to compare results obtained in different studies. This chapter provides an overview of the indications given by standards and other technical recommendations for the mechanical testing of adobe masonry. It presents a review of existing research on the mechanical behaviour of adobe masonry, addressing studies that focus on: (i) compression behaviour, (ii) shear behaviour, (iii) joint shear behaviour. It provides a global analysis of the existing knowledge, suggesting improvements for normative documents and identifying future Research needs. KW - Adobe masonry KW - Mechanical behaviour KW - Experimental tests KW - Standards PY - 2021 SN - 978-3-030-74736-7 DO - https://doi.org/10.1007/978-3-030-74737-4_4 SN - 2194-9832 VL - 20 SP - 55 EP - 92 PB - Springer Nature Switzerland AG AN - OPUS4-54171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Miccoli, Lorenzo A1 - Silva, R. A. A1 - Oliveira, D. V. A1 - Müller, U. T1 - Static behavior of cob: Experimental testing and finite-element modeling JF - Journal of Materials in Civil Engineering N2 - The aim of this paper is to implement a numerical model to reproduce the nonlinear behavior of cob walls under shear loading. Axial compression, pull-off, and diagonal compression tests were carried out to derive the mechanical parameters. In addition, the stressstrain relationships, the nonlinear behavior, and the failure modes were defined. The experimental results were then used to calibrate a finiteelement model. The material behavior was simulated through a macromodeling approach adopting the total strain rotating crack model. A sensitivity analysis was conducted to assess the effects of varying the parameters with higher uncertainty on the structural behavior. The numerical model achieved good correspondence with the experimental results in terms of simulation of the shear stress–shear strain relationship and of damage pattern. KW - Cob KW - Compression behavior KW - Shear behavior KW - Digital image correlation KW - Finite-element method PY - 2019 DO - https://doi.org/10.1061/(ASCE)MT.1943-5533.0002638 SN - 0899-1561 SN - 1943-5533 VL - 31 IS - 4 SP - 04019021-1 EP - 04019021-13 PB - ASCE American Society of Civil Engineers AN - OPUS4-47316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -