TY - JOUR A1 - Miccoli, Lorenzo A1 - Gerrard, C. A1 - Perrone, C. A1 - Gardei, André A1 - Ziegert, C. T1 - A collaborative engineering and archaeology project to investigate decay in historic rammed earth structures: The case of the Medieval preceptory in Ambel N2 - This study assesses the structural vulnerability of part of a later medieval earthen building at Ambel (near Zaragoza, Spain), once a preceptory or monastic house belonging to the Military Orders. An inspection of its morphology and materials coupled with the results of an extensive campaign of static monitoring reveals marked structural inhomogeneities, the product of more than a thousand years of construction, failure, and repair from the 10th century to the present day. Building materials are inappropriately juxtaposed, there are discontinuities between construction phases and fundamental concerns remain over the long-term stability of the structure. The current condition of the structure is mainly influenced by structural discontinuities introduced at the time of construction, the unintended consequences of repair and modification and the material decay that has affected the base of the rammed earth walls. The overall findings of the static monitoring show that there is no related damage, variations in crack widths are related to the building seasonal cycle. While static analysis is an essential prerequisite before a suitable maintenance program can be fully defined, this study argues that no evaluation of the structural behavior of any historic building can afford to ignore its archaeological “biography” of modification and repair. KW - Archaeology KW - Historical earthen building KW - Materials characterization KW - Rammed earth KW - Static monitoring PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-396274 VL - 11 IS - 5 SP - 636 EP - 655 PB - Taylor & Francis Group AN - OPUS4-39627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Miccoli, Lorenzo A1 - Perrone, C. A1 - Fontana, Patrick A1 - Müller, Urs A1 - Ziegert, C. T1 - Charakterisierung und Modellierung der mechanischen Eigenschaften von Lehmsteinmauerwerk / Mechanical characterization and modelling of earth block masonry N2 - Das Wissen über die Materialeigenschaften und die Versagensmechanismen bei Lehmbaustoffen ist begrenzt und lückenhaft. Im Rahmen des EU-Projekts NIKER (www.niker.eu) wurden deshalb die mechanischen Eigenschaften von Bauteilen aus Lehm unter statischer Druck- und Schubbeanspruchung bestimmt. Ziel der Untersuchungen war es, grundlegende Daten zum Verformungs- und Versagensverhalten von Lehmbauteilen zu erhalten und dieses mit einem numerischen Modell zu beschreiben. Die Versuchsergebnisse belegten das spröde Verhalten von Lehmsteinmauerwerk bei uniaxialer Druckbelastung und zeigten, dass das Versagen von Lehmsteinmauerwerk infolge Schubbelastung nach Erstrissbildung in Mörtelfugen und Lehmsteinen durch Gleiten der Lehmsteine entlang der Mörtelfugen erfolgt. Die numerische Makromodellierung erbrachte zwar befriedigende Resultate hinsichtlich des Spannungs-Dehnungs-Verhaltens, jedoch konnte bei der simulierten Rissbildung keine Übereinstimmung mit den in den Versuchen beobachteten Rissbildern erzielt werden. Bei Lehmsteinmauerwerk ist also eine wesentlich aufwendigere Mikromodellierung notwendig, um das Versagensverhalten korrekt beschreiben zu können.-------------------------------------------------------------------------------------------------------------- Knowledge of the material properties and failure mechanisms of earthen materials is limited and scattered. Within the framework of the NIKER project (www.niker.eu) funded by EC, the mechanical properties of earthen material elements were therefore determined under static compression and shear loads. The aim was to obtain fundamental data on deformation behaviour and failure mechanisms of earthen material structural elements and to describe them by means of a numerical model. The test results confirmed the brittle behaviour of earth block masonry under monoaxial compressive load and showed that the failure of earth block masonry under shear load occurs by sliding of the earth blocks along the mortar joints after initial cracking in mortar joints and earth block. Numerical macro modelling showed satisfying results with regard to stress-strain behaviour, but the simulated crack pattern was not consistent with experimental observations. In the case of earth block masonry, it is thus necessary to use micro modelling approaches in order to correctly predict the failure process at local level. KW - Lehmstein Mauerwerk KW - Druckversuche KW - Schubversuche KW - F.E.M. Modellierung PY - 2012 U6 - https://doi.org/10.1002/dama.201200555 SN - 1432-3427 SN - 1437-1022 N1 - Sprachen: Deutsch/Englisch - Languages: German/English VL - 16 IS - 6 SP - 279 EP - 292 PB - Ernst CY - Berlin AN - OPUS4-27589 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miccoli, Lorenzo A1 - Perrone, C. A1 - Müller, Urs A1 - Gardei, André A1 - Ziegert, C. T1 - Comparison of mechanical behavior of different earth masonry typologies in cultural heritage N2 - The paper has been developed in the framework of a larger EC‐research program called NIKER, in which BAM and other seventeen research partners from the Mediterrean area are jointly involved. It aims to develop and validate innovative materials and technologies for the systemic improvement of the seismic behavior of Cultural Heritage assets. The death tolls brought about by recent catastrophes in developing countries where many inhabitants lived in earthen dwellings (Gujarat, India 2001, Bam, Iran 2003 and Concepción, Chile 2010 Earthquakes, Tamil Nadu 2004 Tsunami) have brought about research studies aimed at improving earth construction in terms of strength, seismic resistance and speed of construction. In comparison to the recent advances in research on stone and brick masonry, knowledge on the material properties and failure mechanisms of earthen Building construction is limited and scattered. The research presented here by aims making a comparison of mechanical behaviour between different earth masonry material typologies, consisting of earth block masonry, rammed earth and cob. T2 - WCCE-ECCE-TCCE Joint conference 2 - Seismic protection of cultural heritage CY - Antalya, Turkey DA - 31.10.2011 KW - Earth masonry KW - Material test KW - Cultural heritage KW - Seismic resistance PY - 2011 SN - 978-605-01-0188-1 SP - 25 EP - 36 AN - OPUS4-24836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miccoli, Lorenzo A1 - Müller, Urs A1 - Perrone, C. A1 - Ziegert, C. T1 - Earth block masonry, rammed earth and cob: earthen components from different construction techniques and their structural performance N2 - Both in developed and developing countries, modern building materials tend to be preferred to traditional earthen construction. Reasons include low durability, inadequate performance under seismic loading and, in developing countries, a wish to replace what is perceived as 'poor' with what is perceived as 'rich'. In an age when building permissions and construction standards are a must, particularly in seismic areas, even when an owner is willing to build in earth, construction approval needs to be granted: we rely on values and standards to build, but the necessary data on material properties and structural performance of earthen building techniques is scarce if compared to the abundance of data for other materials (clay brick masonry, concrete, steel) available to the engineer. At the same time, traditional builders' skills, knowledge and confidence in earthen building techniques are decreasing if not disappearing. A wallette testing campaign was thus carried out with the aim of filling this knowledge gap. Prior to the wallette campaign, material properties, including composition and physical-mechanical parameters, were determined. Compression and diagonal compression (shear) tests were then performed, and a basic analysis of the mechanical behaviour of structural elements built in cob is provided in relation to earth block (adobe) masonry and rammed earth elements. Cob, shown to have low compressive resistance, has a relatively ductile post-peak behaviour if compared to earth block masonry specimens which, as expected, show a marked brittle behaviour. In terms of shear strength, cob performs relatively well in view of its low compressive strength. The study is part of our work within the framework of the ongoing project NIKER funded by the European Commission dealing with improving the structural performance of Cultural Heritage assets in order to limit earthquake hazards. T2 - Terra 2012 - 11th International conference on the study and conservation of earthen architecture heritage CY - Lima, Peru DA - 2012-04-22 KW - Earth block KW - Rammed earth KW - Cob KW - Mechanical properties KW - Earthen architecture KW - Earth block masonry PY - 2012 SN - 978-9972-2885-5-5 IS - Theme 6 - t6_066 SP - 1 EP - 10 AN - OPUS4-30380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miccoli, Lorenzo A1 - Perrone, C. A1 - Müller, Urs A1 - Gardei, André A1 - Ziegert, C. ED - Drochytka, R. ED - Bohus, S. T1 - Structural performances of earthen building materials. A comparison between different typologies N2 - Traditional construction techniques utilizing earthen materials are often seen as inferior compared to modern ways of building. Structural earthen elements are perceived as vulnerable towards environmental influences (moisture, frost) and in particular towards the load scenarios during earthquakes. In comparison to the recent advances in research on stone and brick masonry, knowledge on the structural performance of earthen building construction is limited and scattered. Consequently the confidence in the performance of these earthen buildings constructed in the traditional techniques during earthquakes is fairly low. The research presented here aims to make a comparison of mechanical behavior between different earth masonry material typologies, consisting of earth block masonry, rammed earth and cob. The paper has been developed in the framework of a larger research program called NIKER. BAM and other seventeen research partners from the Mediterrean area are jointly involved to develop and validate innovative materials and technologies for the systemic improvement of the seismic behavior of Cultural Heritage assets T2 - 2nd WTA - Internaitonal PhD Symposium - Building materials and buidling technology to preserve the built heritage CY - Brno, Czech Republic DA - 06.10.2011 KW - Earth masonry KW - Material test KW - Mechanical behavior KW - Cultural heritage PY - 2011 SN - 978-3-937066-21-9 SN - 0947-6830 N1 - Serientitel: WTA-Schriftenreihe – Series title: WTA-Schriftenreihe VL - 2 / Part 2 IS - 36 SP - 86 EP - 94 PB - WTA Publications AN - OPUS4-24928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, U. A1 - Miccoli, Lorenzo A1 - Perrone, C. A1 - Ziegert, C. T1 - Vergleich und Modellierung der mechanischen Eigenschaften von Bauteilen aus Lehmsteinmauerwerk, Wellerlehm und Stampflehm T2 - Lehm 2012 - 6. Internationale Fachtagung für Lehmbau CY - Weimar, Germany DA - 2012-10-05 KW - Stampflehm KW - Lehmstein KW - Mauerwerk KW - Wellerlehm KW - Mechanische Eigenschaften PY - 2012 SN - 978-3-00-039649-6 IS - Session C SP - 320 EP - 331 AN - OPUS4-26936 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -