TY - JOUR A1 - Miccoli, Lorenzo A1 - Garofano, A. A1 - Fontana, Patrick A1 - Müller, U. T1 - Experimental testing and finite element modelling of earth block masonry JF - Engineering structures N2 - The current paper focuses on the determination of reliable numerical models of earth block masonry wallettes under different loading conditions. Uniaxial compression and diagonal compression tests were performed. Experimental behaviour was modelled with a non-linear model able to describe the cracking behaviour. The simplified approach based on macro-modelling shows a satisfactory accuracy and low computational costs. The results reproducing the uniaxial compression are in good correspondence with the post-elastic behaviour observed in the experimental campaign. The micro-modelling approach adopted to reproduce the shear behaviour, even with high computational cost, represents a suitable tool to predict the masonry collapse mechanism. KW - Earth block masonry KW - Uniaxial compression test KW - Diagonal compression test KW - Numerical modelling KW - Macro-modelling approach KW - Micro-modelling approach PY - 2015 DO - https://doi.org/10.1016/j.engstruct.2015.09.020 SN - 0141-0296 VL - 104 SP - 80 EP - 94 PB - Elsevier CY - Oxford AN - OPUS4-34553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miccoli, Lorenzo A1 - Garofano, A. A1 - Fontana, Patrick A1 - Müller, U. ED - Lourenco, P.B. ED - Haseltine, B.A. ED - Vasconcelos, G. T1 - Static behaviour of earth block masonry: experimental testing and finite element modelling T2 - 9th IMC - International Masonry Conference 2014 N2 - In this paper an extensive research campaign aimed to define the mechanical performance of earth block masonry panels is presented. Uniaxial compression and diagonal compression tests were performed. The test results confirmed the brittle behaviour of earth block masonry under uniaxial compressive load and showed that the failure of earth block masonry under shear load occurs by sliding of the earth blocks along the mortar joints after initial cracking in mortar joints and earth blocks. For diagonal compression test results showed that building technique practice is one of the key factors affecting the structural performances. Experimental behaviour was modelled with a non-linear model capable of describing cracking behaviour. Both micro-modelling and macro-modelling implementing isotropic or orthotropic material laws were used to assess the reliability of different modelling strategies. The model calibration was carried out by sensibility analysis of the input parameters to understand the influence of unit strength on the shear behaviour of masonry. T2 - 9th IMC - International Masonry Conference CY - Guimaraes, Portugal DA - 07.07.2014 KW - Earthen materials KW - Compression test KW - Diagonal compression test KW - Numerical modelling KW - Earth block masonry KW - Uniaxial compression test PY - 2014 SN - 978-972-8692-85-8 SP - Paper ID 1484, 1 EP - 14 AN - OPUS4-31138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -