TY - JOUR A1 - Nguyen, V. Q. A1 - Baynosa, M. L. A1 - Nguyen, V. H. A1 - Tuma, Dirk A1 - Lee, Y. R. A1 - Shim, J.-J. T1 - Solvent-driven morphology-controlled synthesis of highly efficient long-life ZnO/graphene nanocomposite photocatalysts for the practical degradation of organic wastewater under solar light JF - Applied Surface Science N2 - Metal oxide/graphene photocatalysts have been attracting considerable attention in solving environmental pollution problems because of the limitations of the semiconductor-based photocatalysts. In this study, highly efficient and inexpensive zinc oxide (ZnO) nanoparticles with three different morphologies, such as nanospheres, nanodisks, and nanorods, anchored on reduced graphene oxide (RGO) were synthesized in solvent mixtures with different ethanol to water ratios. Among the three morphologies, the nanospherical ZnO/RGO (sZG) Composite exhibited the highest methylene blue (MB) and rhodamine B removal efficiencies at 99% and 98%, respectively, after only 60 min under low-power (40 W) ultraviolet irradiation at a low catalyst loading of 0.1 g L−1. This nanocomposite also showed excellent photocatalytic stability under UV irradiation, retaining 96% Efficiency even after 15 cycles of MB degradation. Moreover, the sZG composite exhibited a high MB degradation Efficiency of approximately 99% after 100 min at a low catalyst loading of 0.2 g L−1 under solar light illumination. The excellent photocatalytic performance and high stability of this low-cost nanospherical ZnO/RGO Composite exemplarily highlights the potential of sustainable next-generation photocatalysis for treating wastewater containing organic pollutants. KW - Nanocomposite KW - Photocatalyst KW - Dye degradation PY - 2019 DO - https://doi.org/10.1016/j.apsusc.2019.03.262 SN - 0169-4332 SN - 1873-5584 VL - 486 SP - 37 EP - 51 PB - Elsevier B. V. CY - Amsterdam AN - OPUS4-48081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bulakhe, R. N. A1 - Nguyen, V. Q. A1 - Lee, Y. R. A1 - Zhang, H. A1 - Zhang, S. A1 - Shim, J.-J. A1 - Tuma, Dirk T1 - Chemically grown 3D copper hydroxide electrodes with different morphologies for high-performance asymmetric supercapacitors JF - Journal of Industrial and Engineering Chemistry N2 - The present study investigated decoration of Cu(OH)₂ with different morphologies by copper precursors on 3D nickel foam. The Cu(OH)₂-A (nano flower)electrode showed an excellent capacitance of 1332 Fg⁻¹ at current density of 2 Ag⁻¹ compared to the Cu(OH)₂-C (nano ribbon, 1100 Fg⁻¹) and Cu(OH)₂-S (nano Long leaf, 1013 Fg⁻¹) electrodes. An asymmetric supercapacitor (ASC) was fabricated and showed a Maximum capacitance of 165 Fg⁻¹ at current density of 2 Ag⁻¹ with high energy density of 66.7 Wh kg⁻¹ and power density of 5698 W kg⁻¹ with excellent stability of 80 % after 10,000 cycles. KW - Copper hydroxide KW - Nickel foam KW - Supercapacitor PY - 2018 DO - https://doi.org/10.1016/j.jiec.2018.05.043 SN - 1226-086X SN - 1876-794X VL - 66 SP - 288 EP - 297 PB - Elsevier B. V. CY - Amsterdam AN - OPUS4-45930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -