TY - CONF A1 - Lay, Vera A1 - Baensch, Franziska A1 - Sturm, Patrick A1 - Prabhakara, Prathik A1 - Mielentz, Frank A1 - Hofmann, Detlef A1 - Johann, Sergej A1 - Kühne, Hans-Carsten A1 - Niederleithinger, Ernst T1 - Sichere Verschlussbauwerke mittels innovativer Materialien, multisensorischem Monitoring und Ultraschall-Prüfung zur Qualitätssicherung N2 - Verschlussbauwerke sind für die untertägige Endlagerung im Salzgestein als eine wichtige technische Barriere vorgesehen. Diese Bauwerke müssen hohen Anforderungen an Sicherheit und Integrität genügen, weshalb im Projekt SealWasteSafe Werkstofftechnik, Prüfverfahren und Überwachungsmethoden für sichere Verschlussbauwerke verbessert werden. Dabei zeigen die untersuchten alkaliaktivierten Materialien (AAM) langsamere Reaktionskinetik bei der Erhärtung im Vergleich zu Salzbeton, was potenziell geringere Rissbildung erwarten lässt. Die Erhärtung wird an Probekörpern (100-300 l) multisensorisch über einen Zeitraum von mindestens 28 Tagen überwacht. Die Parameter Temperatur und Feuchtigkeit werden einerseits kabelgebunden, andererseits mittels drahtloser Radio Frequency Identification (RFID)-Technik aufgezeichnet. Zusätzlich kommen Schallemissionsmessungen sowie Dehnungsmessungen mittels verteilter faseroptischer Sensorik (FOS) zum Einsatz. Die Überwachung zeigt verschiedene Charakteristika beim Erhärten der Materialien mit geringerer Temperaturentwicklung des AAM. Zusätzlich werden Ultraschallmessungen genutzt, um Einbauteile und Störstellen wie Risse und Delaminationen im Rahmen der Qualitätssicherung am Probekörper und am Verschlussbauwerk zu detektieren. Dafür werden sowohl ein Ultraschallmesssystem mit großer Apertur (LAUS) als auch eine Ultraschall-Bohrlochsonde eingesetzt. Durch Erhöhung des Schalldrucks und Schallfeldbündelung im Beton wird die Aussagekraft der von der Bohrlochsonde aufgezeichneten Messsignale verbessert, was in Modellierungen und ersten Labortests gezeigt werden kann. Die Auswertung der Ultraschallmessungen zeigt das große Potenzial der Methode mit Eindringtiefen bis zu 9 m, wobei anspruchsvolle Abbildungsverfahren zu einer verbesserten Abbildung der internen Strukturen führen. Insgesamt verbessern die im Projekt SealWasteSafe entwickelten Materialien und Methoden die Möglichkeiten für sichere Verschlussbauwerke nuklearer Endlager. Obwohl die Konzepte speziell für Bauwerke im Salzgestein entwickelt werden, sind sie partiell gut auf andere Wirtsgesteine übertragbar. T2 - 3. Tage der Standortauswahl CY - Aachen, Germany DA - 08.06.2022 KW - SealWasteSafe KW - Salzbeton KW - Verschlussbauwerke KW - Monitoring KW - Ultraschall KW - Inspektion PY - 2022 AN - OPUS4-55093 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera A1 - Prabhakara, Prathik A1 - Mielentz, Frank A1 - Baensch, Franziska A1 - Johann, Sergej A1 - Hofmann, Detlef A1 - Sturm, Patrick A1 - Effner, Ute A1 - Niederleithinger, Ernst T1 - Zerstörungsfreie Prüfmethoden für Verschlussbauwerke nuklearer Endlager im Projekt SealWasteSafe N2 - Für die sichere Einlagerung von radioaktiven oder toxischen Abfällen kommen im Salzgestein technische Barrieren in Form von untertägigen Verschlussbauwerken zum Einsatz. Aufgrund der hohen Anforderungen an Sicherheit und Integrität dieser Verschlussbauwerke werden umfangreiche zerstörungsfreie Prüfmethoden zur Überwachung und Qualitätssicherung verwendet. Im BAM-Projekt SealWasteSafe werden Werkstofftechnik, Prüfverfahren und Überwachungsmethoden für sichere Verschlussbauwerke in Endlagern verbessert. Dabei wird der bisherige Salzbeton mit dem innovativen alkaliaktivierten Material (AAM) mit langsamerer Reaktionskinetik bei der Erhärtung und somit potenziell geringerer Rissbildung verglichen. Im Labormaßstab werden Probekörper mit Volumina von 100-300 l multisensorisch ausgestattet und somit die Zuverlässigkeit und Widerstandsfähigkeit der Sensoren gegenüber der hochalkalischen Umgebung nachgewiesen. Durch das Monitoring wird der Abbindevorgang des Betons überwacht und die Materialien über einen Zeitraum von mehreren Wochen charakterisiert. Dabei werden die Parameter Temperatur und Feuchtigkeit einerseits verkabelt als auch mittels drahtloser Radio Frequency Identification (RFID)-Technik aufgezeichnet. Zusätzlich kommen Schallemissionsmessungen sowie Dehnungsmessung mittels verteilter faseroptischer Sensorik (FOS) zum Einsatz. Das multisensorische Überwachungssystem wird durch aktive Ultraschallmessungen ergänzt, die durch die Detektion von Rissen, Delaminationen oder anderen Störstellen eine Qualitätssicherung der Verschlussbauwerke ermöglichen. Dafür werden sowohl ein Ultraschallsystem mit großer Apertur (LAUS) als auch eine Ultraschall-Bohrlochsonde eingesetzt. Durch Erhöhung des Schalldrucks und Bündelung der Schallsignale im Beton wird die Aussagekraft der von der Bohrlochsonde aufgezeichneten Messsignale verbessert, was in Modellierungen und ersten Labortests gezeigt werden kann. Die Auswertung der Ultraschallmessungen erfolgt mit auf Diffraktionssummation beruhenden Migrationsverfahren wie Kirchhoff-Tiefenmigration und Synthetic Aperture Focusing Technique (SAFT), die Abbildungen vom Inneren der Probekörper erzeugen. Insgesamt verbessert das Projekt SealWasteSafe mithilfe innovativer Multisensorik und Ultraschallmethodik die Überwachungs- und Qualitätssicherungskonzepte für sichere Verschlussbauwerke nuklearer Endlager. T2 - 82. Jahrestagung der Deutschen Geophysikalischen Gesellschaft CY - Online meeting DA - 07.03.2022 KW - SealWasteSafe KW - Ultraschall KW - Verschlussbauwerke KW - Abbildungsverfahren PY - 2022 AN - OPUS4-54533 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera A1 - Büttner, Christoph A1 - Buske, Stefan A1 - Niederleithinger, Ernst T1 - Advanced analysis of ultrasonic investigations at sealing structures N2 - Engineering barrier systems are a crucial part of the safe underground disposal of radioactive waste, particularly in salt as a host rock. Sealing structures made of tailored concrete are under test at various sites in Germany. To characterise the material properties of the concrete and potentially also the bonding to the host rock as part of the necessary subsurface structures, we apply non-destructive testing making use of advanced geophysical imaging methods. Ultrasonic investigations have been carried out at underground concrete structures in the Teutschenthal mine in Germany. Here, we show results from two distinct constructions produced in a shotcrete procedure. Our goal is to analyse the performance of ultrasonics to be used as quality assurance for sealing structures made from shotcrete. First, a ~10 m long shotcrete structure is investigated with the help of a unique Large Aperture Ultrasonic System (LAUS) allowing for depth penetration of > 9 m. We perform measurements at the front and from the side of the construction. Second, we obtain results from a 1 m thick shotcrete body containing several artificial defects (width up to 8 cm). Ultrasonic testing data were acquired using a commercial multi-static device. Additionally, a new device measuring with 3D mode instead of line mode is applied and preliminary results will be shown. Generally, the acquired ultrasonic data are analysed by the Synthetic Aperture Focusing Technique that is commonly applied in non-destructive testing. As a result, reflectors in the analysed shotcrete structures are imaged. Individual reflections from internal features and particularly the opposite wall are identified. An unexpected delamination wider than 30 cm is clearly imaged and later verified by boreholes. Thus, the method is – in general – suitable to serve as a quality measure. However, particularly the small and deep artificial defects can hardly be identified in the resulting images. Thus, we use advanced geophysical imaging methods to further enhance the quality of the obtained images. The recorded ultrasonic energy is focused to the physically reflective origin in the analysed volume. First results clearly show that we successfully improve the image quality regarding noise level and artifacts and hence facilitate the detection of objects. In total, we present a valuable experiment under realistic conditions for underground sealing structures made from shotcrete, where the locations of artificial reflectors are partly known. This experiment serves as a unique basis to analyse the performance of advanced analysis methods to obtain high-quality images of the structure’s interior. Hence, the developed ultrasonic testing and analysis schemes can serve as a part of quality assurance that will help to enable safe sealing structures for nuclear waste disposal. T2 - SafeND2023: Interdisciplinary research symposium on the safety of nuclear disposal practices CY - Berlin, Germany DA - 13.09.2023 KW - Ultrasound KW - Imaging KW - Engineered barrier systems KW - Shotcrete PY - 2023 DO - https://doi.org/10.5194/sand-2-67-2023 AN - OPUS4-58497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera A1 - Baensch, Franziska A1 - Hofmann, Detlef A1 - Mielentz, Frank A1 - Sturm, Patrick A1 - Prabhakara, Prathik A1 - Johann, Sergej A1 - Kühne, Hans-Carsten A1 - Niederleithinger, Ernst T1 - New materials and innovative monitoring for safe sealing structures in underground repositories N2 - Within the project SealWasteSafe, we advance construction materials and monitoring concepts of sealing structures applied for underground disposal of nuclear waste. As these engineered barriers have high demands concerning integrity, an innovative alkali-activated material (AAM) is improved and tested on various laboratory scales that is highly suitable for the application in salt as a host rock. This AAM has a low reaction kinetics related to a preferential slow release of the heat of reaction in comparison to alternative salt concretes based on Portland cement or magnesium oxychloride cements. Hence, crack formation due to thermally induced strain is reduced. A comprehensive multi-sensory monitoring scheme is developed and investigated to compare the setting process of AAM and salt concrete for manufactured specimens (100-300 l). The analysed parameters include temperature and humidity of the material, acoustic emissions, and strain variations recorded by fiber optic cables. Passive sensor systems based on radiofrequency identification technology (RFID) embedded in the concrete allow for wireless access and are compared to conventional cabled systems for temperature and humidity measurements. Furthermore, ultrasonic methods are used for quality assurance to detect obstacles, potential cracks and delamination. Field layout and applied imaging techniques are optimised to enhance the image quality. To characterise the inside of the test engineered barrier and achieve a proof-of-concept, an ultrasonic borehole probe is developed to allow for phased arrays that can further improve the detection of potential cracks. Modelling results and first analysis of half-spherical specimen prove the reliability of the directional response caused by the phased arrays of the newly constructed ultrasonic borehole probe. Overall, the project SealWasteSafe improves the construction material, multi-sensory monitoring concepts and ultrasonics for quality assurance. Particularly for salt as a host rock, this will help to develop safe sealing structures for nuclear waste disposal. T2 - 9th IGD-TP Symposium CY - Zurich, Switzerland DA - 20.09.2022 KW - SealWasteSafe KW - Monitoring KW - Engineered barrier systems KW - Alkali-activated material KW - Ultrasonic inspection PY - 2022 AN - OPUS4-55826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera A1 - Niederleithinger, Ernst A1 - Köpp, Christan T1 - Monitoring and digital tools for pre-disposal handling of cemented wastes N2 - Multifaceted developments for pre-disposal management of low and intermediate level radioactive waste are undertaken in the EC funded project PREDIS. In work package 7, innovations in cemented waste handling and pre-disposal storage are advanced by testing and evaluating. To provide better means for safe and effective monitoring of cemented waste packages including prediction tools to assess the future integrity development during pre-disposal activities, several monitoring and digital tools are evaluated and improved. Both safety enhancement (e. g. less exposure of testing personnel) and cost effectiveness are part of the intended impact. Current methods to pack, store, and monitor cemented wastes are identified, analysed and improved. Innovative integrity testing and monitoring techniques applied to evaluate and demonstrate package and storage quality assurance are further developed. The work includes but is not limited to inspection methods such as muon imaging, wireless sensors integrated into waste packages as well as external package and facility monitoring such as remote fiber optical sensors. The sensors applied will go beyond radiation monitoring and include proxy parameters important for long term integrity assessment (e. g. internal pressure). The measured data will be used in digital twins of the packages for specific simulations (geochemical, integrity) providing a prediction of future behaviour. Machine Learning techniques trained by the characterization of older packages will help to connect the models to the actual data. As data handling, processing and fusion are crucial for both the monitoring and the digital twin model, all data (measured and simulated) will be collected in a joint data base and connected to a decision framework. Finally, the implementation of the improved techniques will be tested at actual facilities. An overview about various relevant tools, their interconnections, and first research results will be shown. T2 - 9th IGD-TP Symposium CY - Zurich, Switzerland DA - 20.09.2022 KW - Predis KW - Monitoring KW - Sensors KW - Simulation KW - Digital twin PY - 2022 AN - OPUS4-55827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -