TY - JOUR A1 - Dhotel, A. A1 - Chen, Z. A1 - Sun, J. A1 - Youssef, B. A1 - Saiter, J.-M. A1 - Schönhals, Andreas A1 - Tan, L. A1 - Delbreilh, L. T1 - From monomers to self-assembled monolayers: the evolution of molecular mobility with structural confinements N2 - The effect of structural constriction on molecular mobility is investigated by broadband dielectric spectroscopy (BDS) within three types of molecular arrangements: monomers, oligomers and self-assembled monolayers (SAMs). While disordered monomers exhibit a variety of cooperative and local relaxation processes, the constrained nanodomains of oligomers and highly ordered structure of monolayers exhibit much hindered local molecular fluctuations. Particularly, in SAMs, motions of the silane headgroups are totally prevented whereas the polar endgroups forming the monolayer canopy show only one cooperative relaxation process. This latter molecular fluctuation is, for the first time, observed independently from other overlapping dielectric signals. Numerous electrostatic interactions among those dipolar endgroups are responsible for the strong cooperativity and heterogeneity of the canopy relaxation process. Our data analyses also revealed that the bulkiness of dipolar endgroups can disrupt the organization of the monolayer canopy thus increasing their ability to fluctuate as temperature is increased. PY - 2015 DO - https://doi.org/10.1039/c4sm01893a SN - 1744-683X VL - 11 IS - 4 SP - 719 EP - 731 PB - RSC Publ. CY - Cambridge AN - OPUS4-32378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ziesche, R.F. A1 - Hack, J. A1 - Rasha, L. A1 - Maier, M. A1 - Tan, C. A1 - Heenan, T.M.M. A1 - Markötter, Henning A1 - Kardjilov, N. A1 - Manke, I. A1 - Kockelmann, W. A1 - Brett, D.J.L. A1 - Shearing, P.R. T1 - High-speed 4D neutron computed tomography for quantifying water dynamics in polymer electrolyte fuel cells N2 - In recent years, low-temperature polymer electrolyte fuel cells have become an increasingly important pillar in a zero-carbon strategy for curbing climate change, with their potential to power multiscale stationary and mobile applications. The performance improvement is a particular focus of research and engineering roadmaps, with water management being one of the major areas of interest for development. Appropriate characterisation tools for mapping the evolution, motion and removal of water are of high importance to tackle shortcomings. This article demonstrates the development of a 4D high-speed neutron imaging technique, which enables a quantitative analysis of the local water evolution. 4D visualisation allows the time-resolved studies of droplet formation in the flow fields and water quantification in various cell parts. Performance parameters for water management are identified that offer a method of cell classification, which will, in turn, support computer modelling and the engineering of next-generation flow field designs. KW - Neutron imaging KW - Tomography KW - Polymer electrolyte membrane fuel cell PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545978 DO - https://doi.org/10.1038/s41467-022-29313-5 VL - 13 IS - 1 SP - 1616 PB - Nature Publishing Group UK CY - London AN - OPUS4-54597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tan, K. H. A1 - Sattari, S. A1 - Donskyi, Ievgen A1 - Cuellar-Camacho, J. L. A1 - Cheng, C. A1 - Schwibbert, Karin A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Gorbushina, Anna A1 - Adeli, M. A1 - Haag, R. T1 - Functionalized 2D nanomaterials with switchable binding to investigate graphene–bacteria interactions N2 - Graphene and its derivatives have recently attracted much attention for sensing and deactivating pathogens. However, the mechanism of multivalent interactions at the graphene–pathogen interface is not fully understood. Since different physicochemical parameters of graphene play a role at this interface, control over graphene’s structure is necessary to study the mechanism of these interactions. In this work, different graphene derivatives and also zwitterionic graphene nanomaterials (ZGNMs) were synthesized with defined exposure, in terms of polymer coverage and functionality, and isoelectric points. Then, the switchable interactions of these nanomaterials with E. coli and Bacillus cereus were investigated to study the validity of the generally proposed “trapping” and “nano-knives” mechanisms for inactivating bacteria by graphene derivatives. It was found that the antibacterial activity of graphene derivatives strongly depends on the accessible area, i.e. edges and basal plane of sheets and tightness of their agglomerations. Our data clearly confirm the authenticity of “trapping” and “nano-knives” mechanisms for the antibacterial activity of graphene sheets. KW - XPS KW - Graphene KW - Graphene–bacteria interaction PY - 2018 DO - https://doi.org/10.1039/c8nr01347k SN - 2040-3364 SN - 2040-3372 VL - 10 IS - 20 SP - 9525 EP - 9537 PB - RSC CY - London AN - OPUS4-45084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mi, W. A1 - Josephs, R. D. A1 - Melanson, J. E. A1 - Dai, X. A1 - Wang, Y. A1 - Zhai, R. A1 - Chu, Z. A1 - Fang, X. A1 - Thibeault, M.-P. A1 - Stocks, B. B. A1 - Meija, J. A1 - Bedu, M. A1 - Martos, G. A1 - Westwood, S. A1 - Wielgosz, R. I. A1 - Liu, Q. A1 - Teo, T. L. A1 - Liu, H. A1 - Tan, Y. J. A1 - Öztuğ, M. A1 - Saban, E. A1 - Kinumi, T. A1 - Saikusa, K. A1 - Schneider, Rudolf A1 - Weller, Michael G. A1 - Konthur, Zoltán A1 - Jaeger, Carsten A1 - Quaglia, M. A1 - Mussell, C. A1 - Drinkwater, G. A1 - Giangrande, C. A1 - Vaneeckhoutte, H. A1 - Boeuf, A. A1 - Delatour, V. A1 - Lee, J. E. A1 - O'Connor, G. A1 - Ohlendorf, R. A1 - Henrion, A. A1 - Beltrão, P. J. A1 - Naressi Scapin, S. M. A1 - Sade, Y. B. T1 - PAWG Pilot Study on Quantification of SARS-CoV-2 Monoclonal Antibody - Part 1 N2 - Under the auspices of the Protein Analysis Working Group (PAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a pilot study, CCQM-P216, was coordinated by the Chinese National Institute of Metrology (NIM), National Research Council of Canada (NRC) and the Bureau International des Poids et Mesures (BIPM). Eleven Metrology Institutes or Designated Institutes and the BIPM participated in the first phase of the pilot study (Part 1). The purpose of this pilot study was to develop measurement capabilities for larger proteins using a recombinant humanized IgG monoclonal antibody against Spike glycoprotein of SARS-CoV-2 (Anti-S IgG mAb) in solution. The first phase of the study was designed to employ established methods that had been previously studies by the CCQM Protein Analysis Working Group, involving the digestion of protein down to the peptide or amino acid level. The global coronavirus pandemic has also led to increased focus on antibody quantitation methods. IgG are among the immunoglobulins produced by the immune system to provide protection against SARS-CoV-2. Anti-SARS-CoV-2 IgG can therefore be detected in samples from affected patients. Antibody tests can show whether a person has been exposed to the SARS-CoV-2, and whether or not they potentially show lasting immunity to the disease. With the constant spread of the virus and the high pressure of re-opening economies, antibody testing plays a critical role in the fight against COVID-19 by helping healthcare professionals to identify individuals who have developed an immune response, either via vaccination or exposure to the virus. Many countries have launched large-scale antibody testing for COVID-19. The development of measurement standards for the antibody detection of SARS-CoV-2 is critically important to deal with the challenges of the COVID-19 pandemic. In this study, the SARS-CoV-2 monoclonal antibody is being used as a model system to build capacity in methods that can be used in antibody quantification. Amino acid reference values with corresponding expanded uncertainty of 36.10 ± 1.55 mg/kg, 38.75 ± 1.45 mg/kg, 18.46 ± 0.78 mg/kg, 16.20 ± 0.67 mg/kg and 30.61 ± 1.30 mg/kg have been established for leucine, valine, phenylalanine, isoleucine and proline, respectively. Agreement between nearly all laboratories was achieved for the amino acid analysis within 2 to 2.5 %, with one participant achieving markedly higher results due to a technical issue found in their procedure; this result was thus excluded from the reference value calculations. The relatively good agreement within a laboratory between different amino acids was not dissimilar to previous results for peptides or small proteins, indicating that factors such as hydrolysis conditions and calibration procedures could be the largest sources of variability. Peptide reference values with corresponding expanded uncertainty of 4.99 ± 0.28 mg/kg and 6.83 ± 0.65 mg/kg have been established for ALPAPIEK and GPSVFPLAPSSK, respectively. Not surprisingly due to prior knowledge from previous studies on peptide quantitation, agreement between laboratories for the peptide-based analysis was slightly poorer at 3 to 5 %, with one laboratory's result excluded for the peptide GPSVFPLAPSSK. Again, this level of agreement was not significantly poorer than that achieved in previous studies with smaller or less complex proteins. To reach the main text of this paper, click on Final Report. KW - Antibody quantification KW - Amino acid analysis KW - Peptide analysis KW - Round robin test PY - 2021 DO - https://doi.org/10.1088/0026-1394/59/1a/08001 VL - 59 IS - 1A SP - 08001 AN - OPUS4-54972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -