TY - JOUR A1 - Westwood, S. A1 - Martos, G. A1 - Josephs, R. A1 - Choteau, T. A1 - Wielgosz, R. A1 - Davies, S. A1 - Moawad, M. A1 - Tarrant, G. A1 - Chan, B. A1 - Alamgir, M. A1 - de Rego, E. A1 - Wollinger, W. A1 - Garrido, B. A1 - Fernandes, J. A1 - de Sena, R. A1 - Oliveira, R. A1 - Melanson, J. A1 - Bates, J. A1 - Mai Le, P. A1 - Meija, J. A1 - Quan, C. A1 - Huang, T. A1 - Zhang, W. A1 - Ma, R. A1 - Zhang, S. A1 - Hao, Y. A1 - He, Y. A1 - Song, S. A1 - Wang, H. A1 - Su, F. A1 - Zhang, T. A1 - Li, H. A1 - Lam, W. A1 - Wong, W. A1 - Fung, W. A1 - Philipp, Rosemarie A1 - Dorgerloh, Ute A1 - Meyer, Klas A1 - Piechotta, Christian A1 - Riedel, Juliane A1 - Westphalen, Tanja A1 - Giannikopoulou, P. A1 - Alexopoulos, Ch. A1 - Kakoulides, E. A1 - Kitamaki, Y. A1 - Yamazaki, T. A1 - Shimizu, Y. A1 - Kuroe, M. A1 - Numata, M. A1 - Pérez-Castorena, A. A1 - Balderas-Escamilla, M. A1 - Garcia-Escalante, J. A1 - Krylov, A. A1 - Mikheeva, A. A1 - Beliakov, M. A1 - Palagina, M. A1 - Tkachenko, I. A1 - Spirin, S. A1 - Smirnov, V. A1 - Tang Lin, T. A1 - Pui Sze, C. A1 - Juan, W. A1 - Lingkai, W. A1 - Ting, L. A1 - Quinde, L. A1 - Yizhao, C. A1 - Lay Peng, S. A1 - Fernandes-Whaley, M. A1 - Prevoo-Franzsen, D. A1 - Quinn, L. A1 - Nhlapo, N. A1 - Mkhize, D. A1 - Marajh, D. A1 - Chamane, S. A1 - Ahn, S. A1 - Choi, K. A1 - Lee, S. A1 - Han, J. A1 - Baek, S. A1 - Kim, B. A1 - Marbumrung, S. A1 - Jongmesuk, P. A1 - Shearman, K. A1 - Boonyakong, C. A1 - Bilsel, M. A1 - Gündüz, S. A1 - Ün, I. A1 - Yilmaz, H. A1 - Bilsel, G. A1 - Gökçen, T. A1 - Clarkson, C. A1 - Warren, J. A1 - Achtar, E. T1 - Mass fraction assignment of Bisphenol-A high purity material N2 - The CCQM-K148.a comparison was coordinated by the BIPM on behalf of the CCQM Organic Analysis Working Group for NMIs and DIs which provide measurement services in organic analysis under the CIPM MRA. It was undertaken as a "Track A" comparison within the OAWG strategic plan. CCQM-K148.a demonstrates capabilities for assigning the mass fraction content of a solid organic compound having moderate molecular complexity, where the compound has a molar mass in the range (75 - 500) g/mol and is non-polar (pKow < −2), when present as the primary organic component in a neat organic solid and where the mass fraction content of the primary component in the material is in excess of 950 mg/g. Participants were required to report the mass fraction of Bisphenol A present in one supplied unit of the comparison material. Participants using a mass balance method for the assignment were also required to report their assignments of the impurity components present in the material. Methods used by the seventeen participating NMIs or DIs were predominantly based on either stand-alone mass balance (summation of impurities) or qNMR approaches, or the combination of data obtained using both methods. The results obtained using thermal methods based on freezing-point depression methods were also reported by a limited number of participants. There was excellent agreement between assignments obtained using all three approaches to assign the BPA content. The assignment of the values for the mass fraction content of BPA consistent with the KCRV was achieved by most of the comparison participants with an associated relative standard uncertainty in the assigned value in the range (0.1 - 0.5)%. KW - Bisphenol-A KW - Purity assessment KW - Interlaboratory key comparison KW - Metrology PY - 2021 DO - https://doi.org/10.1088/0026-1394/58/1A/08015 VL - 58 IS - 1A SP - 08015 PB - IOP Publishing AN - OPUS4-54188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kim, K.J. A1 - Unger, Wolfgang A1 - Kim, J.W. A1 - Moon, D.W. A1 - Gross, Thomas A1 - Hodoroaba, Vasile-Dan A1 - Schmidt, Dieter A1 - Wirth, Thomas A1 - Jordaan, W. A1 - van Staden, M. A1 - Prins, S. A1 - Zhang, L. A1 - Fujimoto, T. A1 - Song, X.P. A1 - Wang, H. T1 - Inter-laboratory comparison: quantitative surface analysis of thin Fe-Ni alloy films N2 - An international interlaboratory comparison of the measurement capabilities of four National Metrology Institutes (NMIs) and one Designated Institute (DI) in the determination of the chemical composition of thin Fe-Ni alloy films was conducted via a key comparison (K-67) of the Surface Analysis Working Group of the Consultative Committee for Amount of Substance. This comparison was made using XPS (four laboratories) and AES (one laboratory) measurements. The uncertainty budget of the measured chemical composition of a thin alloy film was dominated by the uncertainty of the certified composition of a reference specimen which had been determined by inductively coupled plasma mass spectrometry using the isotope dilution method. Pilot study P-98 showed that the quantification using relative sensitivity factors (RSFs) of Fe and Ni derived from an alloy reference sample results in much more accurate result in comparison to an approach using RSFs derived from pure Fe and Ni films. The individual expanded uncertainties of the participants in the K-67 comparison were found to be between 2.88 and 3.40 atomic %. The uncertainty of the key comparison reference value (KCRV) calculated from individual standard deviations and a coverage factor (k) of 2 was 1.23 atomic %. KW - Quantification KW - Fe-Ni alloy KW - Uncertainty KW - Key comparison KW - Traceability PY - 2012 DO - https://doi.org/10.1002/sia.3795 SN - 0142-2421 SN - 1096-9918 VL - 44 IS - 2 SP - 192 EP - 199 PB - Wiley CY - Chichester AN - OPUS4-24505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kim, K.J. A1 - Kim, J.W. A1 - Moon, D.W. A1 - Wirth, Thomas A1 - Hodoroaba, Vasile-Dan A1 - Gross, Thomas A1 - Unger, Wolfgang A1 - Jordaan, W. A1 - Staden, M.v. A1 - Prins, S. A1 - Wang, H. A1 - Song, X. A1 - Zhang, L. A1 - Fujimoto, T. A1 - Kojima, I. T1 - Final report on key comparison K67 and parallel pilot study P108: measurement of composition of a thin Fe-Ni alloy film N2 - The Key Comparison K67 and the parallel Pilot Study P108 on quantitative analysis of thin alloy films have been completed in the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The aim of these inter-laboratory comparisons is to determine the degree of equivalence in the measurement capability of national metrology institutes (NMIs) and designated institutes (DIs) for the determination of the composition of thin alloy films. The measurand is expressed in atomic percent. A Fe-Ni alloy film with a certified composition was available for the participants of the inter-laboratory comparison. It has been used as a reference specimen to determine the relative sensitivity factors (RSF) of Fe and Ni for the different analytical methods used by the participants to determine the composition of the test sample. As was shown in the preceding Pilot Study P98, the degrees of equivalence in the measurement capabilities of the participants can be improved in that way. The composition of the reference specimen was certified by inductively coupled plasma mass spectrometry (ICP-MS) using the isotope dilution method. The in-depth and lateral homogeneity, determined in terms of elemental composition, of the certified reference sample and the unknown test sample were confirmed by secondary ion mass spectrometry (SIMS) using C60 primary ions by the leading laboratory. Five laboratories participated in the key comparison. Four of them used x-ray photoelectron spectroscopy (XPS) and one Auger electron spectroscopy (AES). One laboratory participated in the parallel P108 pilot study using electron probe micro analysis with an energy-dispersive spectrometer (ED EPMA) and XPS. KW - XPS KW - AES KW - EDX KW - Fe-Ni alloy film KW - Key comparison KW - CCQM PY - 2010 DO - https://doi.org/10.1088/0026-1394/47/1A/08011 SN - 0026-1394 SN - 1681-7575 VL - 47 IS - 1A SP - 08011-1 - 08011-15 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-21045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yang, L. A1 - Vogl, Jochen A1 - Mann, J. A1 - Kraft, R. A1 - Vocke, R. A1 - Pramann, A. A1 - Eberhardt, J. A1 - Rienitz, O. A1 - Lee, K.-S. A1 - Lim, J. S. A1 - Sobina, E. A1 - Song, P. A1 - Wang, J. A1 - Mester, Z. A1 - Meija, J. T1 - Copper isotope delta measurements in high purity materials: CCQM-P213 pilot study N2 - Accurate and precise isotope ratio measurements of heavy elements are playing an increasinglyimportant role in modern analytical sciences and have numerous applications. Today, isotope ratio measurements are typically performed with two principal techniques: thermal ionization mass spectrometry (TIMS) and multiple collector-inductively coupled plasma mass spectrometry (MC-ICP-MS). To obtain accurate results by mass spectrometry, isotopic certified reference materials (iCRMs) are needed for mass bias correction and for the validation of the method used for analysis.Thus, it is of paramount importance to achieve measurement comparability of all data reported, and to assess measurement capability of each CRM producer/National Metrology Institute (NMI). Therefore, the international comparison (CCQM-P213) was performed to assess the analytical capabilities of NMIs for the accurate determination of copper isotope ratio delta values in high purity materials. The study was proposed by the coordinating laboratories, National Research Council Canada (NRC), National Institute of Standards and Technology (NIST), Bundesanstalt für Materialforschung und -prüfung (BAM) and Physikalisch-Technische Bundesanstalt (PTB), as an activity of the Isotope Ratio Working Group (IRWG) of the Consultative Committee for Amount of Substance - Metrology in Chemistry and Biology (CCQM). Participants included six NMIs and one designated institute (DI) from the six countries. Although no measurement method was prescribed by the coordinating laboratories, MC-ICP-MS with either standard-sample bracketing (SSB) or combined SSB with internal normalization (C-SSBIN) models for mass bias correction were recommended. Results obtained from the six NMIs and one DI were in good agreement. KW - Comparability KW - Traceability KW - Metrology KW - Isotope delta KW - Copper PY - 2023 DO - https://doi.org/10.1088/0026-1394/60/1A/08019 VL - 60 IS - 1A SP - 1 EP - 23 PB - IOP Science AN - OPUS4-58040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Yi A1 - Song, L. A1 - Young, M.D. A1 - van der Wielen, M. A1 - Evans-Nguyen, T. A1 - Riedel, Jens A1 - Shelley, J.T. T1 - Unsupervised Reconstruction of Analyte-Specific Mass Spectra Based on Time-Domain Morphology with a Modified Cross-Correlation Approach N2 - Concomitant species that appear at the same or very similar times in a mass-spectral analysis can clutter a spectrum because of the coexistence of many analyte-related ions (e.g., molecular ions, adducts, fragments). One method to extract ions stemming from the same origin is to exploit the chemical information encoded in the time domain, where the individual temporal appearances inside the complex structures of chronograms or chromatograms differ with respect to analytes. By grouping ions with very similar or identical time-domain structures, single-component mass spectra can be reconstructed, which are much easier to interpret and are library-searchable. While many other approaches address similar objectives through the Pearson’s correlation coefficient, we explore an alternative method based on a modified cross-correlation algorithm to compute a metric that describes the degree of similarity between features inside any two ion chronograms. Furthermore, an automatic workflow was devised to be capable of categorizing thousands of mass-spectral peaks into different groups within a few seconds. This approach was tested with direct mass-spectrometric analyses as well as with a simple, fast, and poorly resolved LC–MS analysis. Single-component mass spectra were extracted in both cases and were identified based on accurate mass and a mass-spectral library search. KW - Mass-Spectral Reconstruction KW - Mass Spectrometry KW - Correlation PY - 2021 DO - https://doi.org/10.1021/acs.analchem.0c04396 VL - 93 IS - 12 SP - 5009 EP - 5014 PB - ACS AN - OPUS4-52467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Song, L. A1 - You, Yi A1 - Perdomo, R. A1 - Evans-Nguyen, T. T1 - Inexpensive Ultrasonic Nebulization Coupled with Direct Current Corona Discharge Ionization Mass Spectrometry for Liquid Samples and Its Fundamental Investigations N2 - The concept of direct mass-spectrometric analysis, especially exploited by ambient desorption/ionization (ADI) methods, provides numerous means for convenient sample analysis. While many simple and versatile ionization sources have been developed, challenges lay in achieving efficient sample introduction. In previous work, a sample introduction method employing direct current corona discharge (CD) coupled to a surface acoustic wave nebulization (SAWN) device enhanced sampling performance for both polar and nonpolar analytes by up to 4 orders of magnitude. In fact, the SAWN-CD method generated a multiply charged peptide ion signal comparable to that of conventional ESI. Unfortunately, the high cost of the SAWN devices themselves limits their accessibility. Herein, we report on an analogous implementation of CD with an inexpensive ultrasonic nebulizer (USN) on the basis of a commercial room humidifier demonstrating equivalent exemplary performance. We subsequently compare the two methods of SAWN-CD and USN-CD in a screening application of milk for the detection of two antibiotic drugs, ciprofloxacin and ampicillin. Finally, we further investigate the relative softness of these CD-coupled acoustic nebulization methods in comparison to that of ESI using a survival yield study of the thermometer ion nitrobenzylpyridinium. KW - Rapid Analysis KW - Ultrasonic Nebulization KW - Corona Discharge PY - 2020 DO - https://doi.org/10.1021/acs.analchem.0c00524 VL - 92 IS - 16 SP - 11072 PB - ACS Publication AN - OPUS4-51225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lazurenko, D.V. A1 - Laptev, I.S. A1 - Golkovsky, M.G. A1 - Stark, A. A1 - Paul, J. A1 - Bataev, I. A1 - Ruktuev, A.A. A1 - Song, L. A1 - Gollwitzer, Christian A1 - Pyczak, F. T1 - Influence of the Ti/Al/Nb ratio on the structure and properties on intermetallic layers obtained on titanium by non-vacuum electron beam cladding N2 - Ti-Al-Nb based intermetallic layers of sufficient quality and thickness were obtained by non-vacuum electron beam cladding on the surfaces of Ti workpieces. Optical microscopy and X-ray tomography did not reveal any dramatical defects in the structure of cladded layers. X-ray diffraction as well as scanning and transmission electron microscopy were applied to thoroughly investigate the structure and phase composition of coatings. It was found that non-equilibrium cooling conditions of coatings provided by fast removal of heat to untreated Ti substrate after the electron beam cladding was terminated induced the proceeding of metastable phase transformations. For example, γ-phase formation was suppressed in these coatings. In coatings with 8 and 20 at.% Nb (46 and 43% Al respectively) along with ordered with α2, formation of disordered solution of the alloying elements in α-Ti took place. In high-Nb alloys β(B2) phase has undergone the diffusionless transformation to ω’, which is the intermediate phase in β → ω and the coating with the maximum Nb content characterized by appearance of γ1 as a main phase. ω-phase had negative influence to hardness and wear resistance of coatings, however, generally this paremeter increased in 1.3–1.75 times compared to cp-Ti. The high temperature creep and oxidation properties decreased proportionally with increasing Nb and decreasing Al content in the cladded layers. KW - Electron beam cladding KW - Titanium aluminides KW - Metastable phases KW - Diffraction analysis KW - Wear KW - High-temperature properties PY - 2020 DO - https://doi.org/10.1016/j.matchar.2020.110246 SN - 1044-5803 VL - 163 SP - 110246 PB - Elsevier Inc. AN - OPUS4-50550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, H. A1 - Song, W. A1 - Gröninger, Delia A1 - Zhang, L. A1 - Lu, Y. A1 - Chan, K. S. A1 - Zhou, Z. A1 - Rurack, Knut A1 - Shen, Z. T1 - Real-time monitoring of newly acidified organelles during autophagy enabled by reaction-based BODIPY dyes N2 - Real-time monitoring of newly acidified organelles during autophagy in living cells is highly desirable for a better understanding of intracellular degradative processes. Herein, we describe a reaction-based boron dipyrromethene (BODIPY) dye containing strongly electron-withdrawing diethyl 2-cyanoacrylate groups at the α-positions. The probe exhibits intense red fluorescence in acidic organelles or the acidified cytosol while negligible fluorescence in other regions of the cell. The underlying mechanism is a nucleophilic reaction at the central meso-carbon of the indacene core, resulting in the loss of π-conjugation entailed by dramatic spectroscopic changes of more than 200 nm between its colorless, non-fluorescent leuco-BODIPY form and its red and brightly emitting form. The reversible transformation between red fluorescent BODIPY and leuco-BODIPY along with negligible cytotoxicity qualifies such dyes for rapid and direct intracellular lysosome imaging and cytosolic acidosis detection simultaneously without any washing step, enabling the real-time monitoring of newly acidified organelles during autophagy. KW - Autophagy KW - BODIPY KW - Fluorescence KW - Lysosome KW - Real-time imaging PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498358 UR - https://www.nature.com/articles/s42003-019-0682-1 DO - https://doi.org/10.1038/s42003-019-0682-1 SN - 23993642 VL - 2 SP - 442 PB - Nature Research CY - London AN - OPUS4-49835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Song, L. A1 - You, Yi A1 - Evans-Nguyen, T. T1 - Surface acoustic wave nebulization with atmospheric-pressure chemical ionization for enhanced ion signal N2 - Many ambient desorption/ionization mass spectrometry (ADI-MS) techniques rely critically on thermal desorption. Meanwhile, the analyte classes that are successfully studied by any particular ADI-MS methods are strongly dependent on the type of ionization source. Generally, spraybased ionization sources favor polar analytes, whereas plasmabased sources can be used for more hydrophobic analytes and are more suitable for molecules with small molar masses. In the present work, classic atmospheric-pressure chemical ionization (APCI) is used. To provide improved desorption performance for APCI, a surface acoustic wave nebulization (SAWN) device was implemented to convert liquid analytes into fine airborne particles. Compared to conventional SAWN that is used solely as an ionization source for liquid samples, the coupling of SAWN and APCI significantly improves ion signal by up to 4 orders of magnitude, reaching comparable ion abundances to those of electrospray ionization (ESI). Additionally, this coupling also extends the applicable mass range of an APCI source, conventionally known for the ionization of small molecules <500 Da. Herein, we discuss cursory evidence of this applicability to a variety of analytes including both polar and nonpolar small molecules and novel peptides that mimic biomolecules upward of 1000 Da. Observed species are similar to ESI-derived ions including doubly charged analyte ions despite presumably different charging mechanisms. SAWN−APCI coupling may thus involve more nuanced ionization pathways in comparison to other ADI approaches. KW - Nebulization KW - Ionization KW - Atomspheric-Pressure KW - Acoustic PY - 2018 DO - https://doi.org/10.1021/acs.analchem.8b03927 SN - 0003-2700 SN - 1520-6882 VL - 91 IS - 1 SP - 912 EP - 918 PB - American Chemical Society AN - OPUS4-47463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -