TY - CONF A1 - Marin, L. A1 - Döhler, Michael A1 - Bernal, D. A1 - Mevel, L. ED - Chang, F.-K. T1 - Statistical based decision making for damage localization with influence lines N2 - A theorem on damage localization from flexibility changes has been proven recently, where it has been shown that the image of the change in flexibility δF between damaged and reference states of a structure is a basis for the influence lines of stress resultants at the damaged locations. This damage localization approach can operate on output-only vibration measurements from damaged and reference states, and a finite element model of the structure in reference state is required. While the localization approach is based on purely mechanical principles, an estimate of the image of δF is required from the data that is subject to statistical uncertainty due to unknown noise excitation and finite data length. In this paper, this uncertainty is quantified from the measurements and a statistical framework is added for the decision about damaged elements. The combined approach is successfully applied to a numerical simulation and to a cantilever beam in a lab experiment. T2 - IWSHM 2013 - 9th International workshop on structural health monitoring CY - Stanford, CA, USA DA - 2013-09-10 PY - 2013 SN - 978-1-60595-115-7 VL - 1 SP - 159 EP - 166 AN - OPUS4-30476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mevel, L. A1 - Döhler, Michael T1 - Subspace methods for blind identification of structural dynamics T2 - Colloquium Rennais des Sciences du Numerique CY - Rennes, France DA - 2013-04-17 PY - 2013 AN - OPUS4-28068 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Döhler, Michael A1 - Hille, Falk A1 - Mevel, L. A1 - Rücker, Werner T1 - Estimation of modal parameters and their uncertainty bounds from subspace-based system identification PY - 2013 SN - 978-3-200-03179-1 IS - Chapter 5 SP - 91 EP - 106 CY - Vienna, Austria AN - OPUS4-29906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le Cam, V. A1 - Döhler, Michael A1 - Le Pen, M. A1 - Mevel, L. ED - Chang, F.-K. T1 - Embedded modal analysis algorithms on the smart wireless sensor platform PEGASE N2 - Operational modal analysis and vibration based damage detection of engineering structures have become important issues for Structural Health Monitoring (SHM) and maintenance operations, e.g. on transport infrastructure. Methods from control engineering have been adopted and converted for the application on civil structures. Approaches like subspace-based system identification combine excellent theoretical properties under the unknown excitation properties of a structure with practical usefulness. In this paper, the implementation of covariance-driven stochastic subspace identification (SSI) on the smart wireless sensor platform PEGASE is described. Special care is taken about the fast implementation of this technique since the computations are embedded on the platform and perform in real-time. The most efficient and current version of subspace algorithms has been implemented. Efficiency and memory consumption are primary criteria in this implementation. First validated results will be given for each step of the algorithms: crosscorrelation on natural inputs signal from sensors; Hankel matrix output; SSI implementation using the LAPACK library to get a SVD, pseudo-inverse, eigenvalues etc. Results validation has been correlated between PEGASE implementation and the previous processing in static situation: the same data was collected by wired sensors and data-loggers, then, later, processed on a PC using traditional Matlab software. In parallel, from an engineering point of view, a description of the PEGASE wireless platform will be given: generic usage, wide capacities, embedded Digital Signal Processing (DSP) processor and Library over a small embedded Linux Operating System, a very accurate synchronization principle based on a GPS/PPS principle, etc. Perspectives about a complete technical in-situ installation will also be given. T2 - IWSHM 2013 - 9th International workshop on structural health monitoring CY - Stanford, CA, USA DA - 2013-09-10 PY - 2013 SN - 978-1-60595-115-7 VL - 1 SP - 1210 EP - 1217 AN - OPUS4-30477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -