TY - CONF A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. A1 - Rücker, Werner ED - Chang, F.-K. T1 - Structural health monitoring during progressive damage test of S101 bridge T2 - IWSHM 2011 - 8th International workshop on structural health monitoring 2011 (Proceedings) N2 - For the last decades vibration based identification of damage on civil Engineering structures has become an important issue for maintenance operations on transport infrastructure. Research in that field has been rapidly expanding from classic modal Parameter estimation using measured excitation to modern operational monitoring. Here the difficulty is to regard to the specific environmental and operational influence to the structure under observation. In this paper, two methods accounting for statistical and/or operational uncertainties are applied to measurement data of a progressive damage test on a prestressed concrete bridge. On the base of covariance driven Stochastic Subspace Identification (SSI) an algorithm is developed to monitor and automatically compute confidence intervals of the obtained modal parameters. Furthermore, a null space based non-parametric damage detection method, utilizing a statistical χ2 type test is applied to the measurement data. It can be shown that for concrete bridges the proposed methodology is able to clearly indicate the presence of structural damage, if the damage leads to a change of the structural system. T2 - 8th International workshop on structural health monitoring 2011 CY - Stanford, CA, USA DA - 13.09.2011 KW - Subspace identification KW - Damage detection KW - Convidence intervals KW - Prestressed concrete bridge PY - 2011 SN - 978-1-60595-053-2 VL - 1 SP - 748 EP - 758 PB - DEStech Publications, Inc. AN - OPUS4-24688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hille, Falk A1 - Döhler, M. A1 - Mevel, L. A1 - Rücker, Werner ED - De Roeck, G. ED - Degrande, G. ED - Lombaert, G. ED - Müller, G. T1 - Subspace-based damage detection methods on a prestressed concrete bridge T2 - EURODYN 2011 - 8th International conference on structural dynamics (Proceedings) N2 - For the last decades vibration based damage detection of engineering structures has become an important issue for maintenance operations on transport infrastructure. Research in vibration based structural damage detection has been rapidly expanding from classic modal parameter estimation to modern operational monitoring. Methodologies from control Engineering especially of aerospace applications have been adopted and converted for the application on civil structures. Here the difficulty is to regard to the specific environmental and operational influence to the structure under observation. A null space based damage detection algorithm is tested for its sensitivity to structural damage of a prestressed concrete road bridge. Specific techniques and extensions of the algorithm are used to overcome difficulties from the size of the structure which is associated with the number of recorded sensor channels as well as from the operational disturbances by a nearby construction site. It can be shown that for concrete bridges the proposed damage detection methodology is able to clearly indicate the presence of structural damage, if the damage leads to a significant change of the structural system. Small damage which do not result in a System change when not activated by loading, do not lead to a modification of the dynamic response behavior and for that cannot be detected with the proposed global monitoring method. T2 - EURODYN 2011 - 8th International conference on structural dynamics CY - Leuven, Belgium DA - 04.07.2011 KW - Subspace methods KW - Fault detection KW - Monitoring techniques KW - Concrete bridge PY - 2011 SN - 978-90-760-1931-4 IS - MS12 TUE 11:45 SP - 2304 EP - 2310 AN - OPUS4-24689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Döhler, M. A1 - Hille, Falk A1 - Lam, X.-B. A1 - Mevel, L. A1 - Rücker, Werner ED - Proulx, T. T1 - Confidence intervals of modal parameters during progressive damage test T2 - 29th IMAC - Conference on structural dynamics (Proceedings) N2 - In Operational Modal Analysis, the modal parameters (natural frequencies, damping ratios and mode shapes) obtained from Stochastic Subspace Identification (SSI) of a structure, are afflicted with statistical uncertainty. For evaluating the quality of the obtained results it is essential to know the respective confidence intervals of these figures. In this paper we present algorithms that automatically compute the confidence intervals of modal parameters obtained from covarianceand data-driven SSI of a structure based on vibration measurements. They are applied to the monitoring of the modal parameters of a prestressed concrete highway bridge during a progressive damage test that was accomplished within the European research project IRIS. Results of the covariance- and data-driven SSI are compared. T2 - 29th IMAC - Conference on structural dynamics CY - Jacksonville, FL, USA DA - 31.01.2011 KW - Stochastische subspace basierte Identifikation KW - Schadensdetektion KW - Spannbetonbrücke PY - 2011 SN - 978-1-4419-9304-5 DO - https://doi.org/10.1007/978-1-4419-9305-2_17 SN - 2191-5644 N1 - Serientitel: Conference Proceedings of the Society for Experimental Mechanics Series – Series title: Conference Proceedings of the Society for Experimental Mechanics Series VL - 4 SP - 237 EP - 250 PB - Springer AN - OPUS4-24335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Döhler, Michael A1 - Hille, Falk A1 - Mevel, L. A1 - Rücker, Werner T1 - Estimation of modal parameters and their uncertainty bounds from subspace-based system identification T2 - IRIS Industrial safety and life cycle engineering - Technologies / Standards / Applications PY - 2013 SN - 978-3-200-03179-1 IS - Chapter 5 SP - 91 EP - 106 CY - Vienna, Austria AN - OPUS4-29906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Mevel, L. ED - Cunha, A. ED - Caetano, E. T1 - Stochastic subspace-based damage detection of a temperature affected beam structure T2 - Proceedings of the 10th International Conference on Structural Health Monitoring of Intelligent Infrastructure, SHMII 10 N2 - Structural health monitoring (SHM) of civil structures often is limited due to changing environmental conditions, as those changes affect the structural dynamical properties in a similar way like damages can do. In this article, an approach for damage detection under changing temperatures is presentedand applied to a beam structure. The used stochastic subspace-based algorithm relies on a reference null space estimate, which is confronted to data from the testing state in a residual function. For damage detection the residual is evaluated by means of statistical hypothesis tests. Changes of the system due to temperature effects are handled with a model interpolation approach from linear parameter varying system theory. From vibration data measured in the undamaged state at some few reference temperatures, a model of the dynamic system valid for the current testing temperature is interpolated. The reference null space and the covariance matrix for the hypothesis test is computed from this interpolated model. This approach has been developed recently and was validated in an academic test case on simulations of a mass-spring-damper. In this paper, the approach is validated experimentally on a beam structure under varying temperature conditions in a climate chamber. Compared to other approaches, the interpolation approach leads to significantly less false positive alarms in the reference state when the structure is exposed to different temperatures, while faults can still be detected reliably. T2 - 10th International Conference on Structural Health Monitoring of Intelligent Infrastructure, SHMII 10 CY - Online meeting DA - 30.06.2021 KW - Damage detection KW - Subspace methods KW - Temperature effects KW - Model interpolation KW - Climate chamber KW - Laboratory beam structure PY - 2021 SP - 1 EP - 6 AN - OPUS4-52999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Döhler, Michael A1 - Mevel, L. A1 - Hille, Falk T1 - Efficient computation of minmax tests for fault isolation and their application to structural damage localization T2 - 19th World congress of the international federation of automatic control (Proceedings) N2 - Fault detection and isolation can be handled by many different approaches. This paper builds upon a hypothesis test that checks whether the mean of a Gaussian random vector has become non-zero in the faulty state, based on a chi2 test. For fault isolation, it has to be decided which components in the parameter set of the Gaussian vector have changed, which is done by variants of the chi2 hypothesis test using the so-called sensitivity and minmax approaches. While only the sensitivity of the tested parameter component is taken into account in the sensitivity approach, the sensitivities of all parameters are used in the minmax approach, leading to better statistical properties at the expense of an increased computational burden. The computation of the respective test variable in the minmax test is cumbersome and may be ill-conditioned especially for large parameter sets, asking hence for a careful numerical evaluation. Furthermore, the fault isolation procedure requires the repetitive calculation of the test variable for each of the parameter components that are tested for a change, which may be a significant computational burden. In this paper, dealing with the minmax problem, we propose a new efficient computation for the test variables, which is based on a simultaneous QR decomposition for all parameters. Based on this scheme, we propose an efficient test computation for a large parameter set, leading to a decrease in the numerical complexity by one order of magnitude in the total number of parameters. Finally, we show how the minmax test is useful for structural damage localization, where an asymptotically Gaussian residual vector is computed from output-only vibration data of a mechanical or a civil structure. T2 - 19th World congress of the international federation of automatic control CY - Cape Town, South Africa DA - 24.08.2014 KW - Fault isolation KW - Residual evaluation KW - Statistical tests KW - Numerical computation KW - Mechanical systems PY - 2014 SP - 7382 EP - 7387 PB - IFAC AN - OPUS4-31573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhuyan, Md Delwar Hossain A1 - Le Touz, N. A1 - Gautier, G. A1 - Döhler, M. A1 - Hille, Falk A1 - Dumoulin, J. A1 - Mevel, L. T1 - Load vector based damage localization with rejection of the temperature effect T2 - Proceedings of IOMAC'19 N2 - The Stochastic Dynamic Damage Locating Vector (SDDLV) approach is a vibration-based damage localization method based on both a finite element model of a structure and modal parameters estimated from output-only measurements in the damage and reference states. A statistical version of the Approach takes into account the inherent uncertainty due to noisy measurement data. In this paper, the effect of temperature fluctuations on the performance of the method is analyzed in a model-based approach using a finite element model with temperature dependent parameters. Robust damage localization is carried out by rejecting the temperature influence on the identified modal parameters in the damaged state. The algorithm is illustrated on a simulated structure. T2 - 8. International Operational Modal Analysis Conference CY - Kopenhagen, Denmark DA - 12. Mai 2019 KW - SDDLV KW - Load vector KW - Temperature rejection KW - Statistical evaluation PY - 2019 SP - 1 EP - 10 AN - OPUS4-48182 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhuyan, Md Delwar Hossain A1 - Döhler, M. A1 - Lecieux, Y. A1 - Lupi, C. A1 - Thomas, J.-C. A1 - Schoefs, F. A1 - Hille, Falk A1 - Mevel, L. T1 - Statistical subspace based damage localization on Saint-Nazaire bridge mock-up T2 - Proceedings of IOMAC'19 N2 - The subject of damage localization is an important issue for Structural Health Monitoring (SHM) particularly in mechanical or civil structures under ambient excitation. In this paper, the statistical subspacebased damage localization method has been applied on a benchmark application, namely a 1/200 scale model of the Saint-Nazaire Bridge, which is a cable-stayed bridge located on the Loire River near the river’s mouth. The employed damage localization method combines data-driven features with physical parameter information from a finite element model in statistical tests, avoiding typical ill-conditioning problems of FE model updating. Damage is introduced in the mockup for cable failures on some of the 72 cables. The purpose of the experiment is to assess the capability of damage assessment methods to find a cable failure. T2 - 8. International Operational Modal Analysis Conference CY - Kopenhagen, Denmark DA - 12. Mai 2019 KW - Damage localization KW - Cable-stayed bridge KW - Cable failure KW - Structural health monitoring PY - 2019 SP - 1 EP - 9 AN - OPUS4-48183 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhuyan, Md Delwar Hossain A1 - Le Touz, N. A1 - Gautier, G. A1 - Döhler, M. A1 - Hille, Falk A1 - Dumoulin, J. A1 - Mevel, L. T1 - Load Vector Based Damage Localization with Rejection of the Temperature Effect T2 - Proceedings of 8th International Operational Modal Analysis Conference N2 - The Stochastic Dynamic Damage Locating Vector (SDDLV) approach is a vibration-based damage localization method based on both a finite element model of a structure and modal parameters estimated from output-only measurements in the damage and reference states. A statistical version of the Approach takes into account the inherent uncertainty due to noisy measurement data. In this paper, the effect of temperature fluctuations on the performance of the method is analyzed in a model-based approach using a finite element model with temperature dependent parameters. Robust damage localization is carried out by rejecting the temperature influence on the identified modal parameters in the damaged state. The algorithm is illustrated on a simulated structure. T2 - International Operational Modal Analysis Conference CY - Copenhagen, Danmark DA - 13.05.2019 KW - Statistical evaluation KW - Damage localization KW - SDDLV KW - Load vector KW - Temperature rejection PY - 2019 SP - 1 EP - 10 AN - OPUS4-48241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhuyan, Md Delwar Hossain A1 - Döhler, M. A1 - Lecieux, Y. A1 - Lupi, C. A1 - Thomas, J. A1 - Schoefs, F. A1 - Hille, Falk A1 - Mevel, L. T1 - Statistical Subspace-based Damage Localization on Saint-Nazaire Bridge Mock-Up T2 - Proceedings of 8th International Operational Modal Analysis Conference N2 - The subject of damage localization is an important issue for Structural Health Monitoring (SHM) particularly in mechanical or civil structures under ambient excitation. In this paper, the statistical subspacebased damage localization method has been applied on a benchmark application, namely a 1/200 scale model of the Saint-Nazaire Bridge, which is a cable-stayed bridge located on the Loire River near the river’s mouth. The employed damage localization method combines data-driven features with physical parameter information from a finite element model in statistical tests, avoiding typical ill-conditioning problems of FE model updating. Damage is introduced in the mockup for cable failures on some of the 72 cables. The purpose of the experiment is to assess the capability of damage assessment methods to find a cable failure. T2 - International Operational Modal Analysis Conference CY - Copenhagen, Danmark DA - 13.05.2019 KW - Structural health monitoring KW - Damage localization KW - Cable-stayed bridge KW - Cable failure PY - 2019 SP - 1 EP - 9 AN - OPUS4-48243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -