TY - CONF A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. A1 - Rücker, Werner ED - Chang, F.-K. T1 - Structural health monitoring during progressive damage test of S101 bridge N2 - For the last decades vibration based identification of damage on civil Engineering structures has become an important issue for maintenance operations on transport infrastructure. Research in that field has been rapidly expanding from classic modal Parameter estimation using measured excitation to modern operational monitoring. Here the difficulty is to regard to the specific environmental and operational influence to the structure under observation. In this paper, two methods accounting for statistical and/or operational uncertainties are applied to measurement data of a progressive damage test on a prestressed concrete bridge. On the base of covariance driven Stochastic Subspace Identification (SSI) an algorithm is developed to monitor and automatically compute confidence intervals of the obtained modal parameters. Furthermore, a null space based non-parametric damage detection method, utilizing a statistical χ2 type test is applied to the measurement data. It can be shown that for concrete bridges the proposed methodology is able to clearly indicate the presence of structural damage, if the damage leads to a change of the structural system. T2 - 8th International workshop on structural health monitoring 2011 CY - Stanford, CA, USA DA - 13.09.2011 KW - Subspace identification KW - Damage detection KW - Convidence intervals KW - Prestressed concrete bridge PY - 2011 SN - 978-1-60595-053-2 VL - 1 SP - 748 EP - 758 PB - DEStech Publications, Inc. AN - OPUS4-24688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hille, Falk A1 - Döhler, M. A1 - Mevel, L. A1 - Rücker, Werner ED - De Roeck, G. ED - Degrande, G. ED - Lombaert, G. ED - Müller, G. T1 - Subspace-based damage detection methods on a prestressed concrete bridge N2 - For the last decades vibration based damage detection of engineering structures has become an important issue for maintenance operations on transport infrastructure. Research in vibration based structural damage detection has been rapidly expanding from classic modal parameter estimation to modern operational monitoring. Methodologies from control Engineering especially of aerospace applications have been adopted and converted for the application on civil structures. Here the difficulty is to regard to the specific environmental and operational influence to the structure under observation. A null space based damage detection algorithm is tested for its sensitivity to structural damage of a prestressed concrete road bridge. Specific techniques and extensions of the algorithm are used to overcome difficulties from the size of the structure which is associated with the number of recorded sensor channels as well as from the operational disturbances by a nearby construction site. It can be shown that for concrete bridges the proposed damage detection methodology is able to clearly indicate the presence of structural damage, if the damage leads to a significant change of the structural system. Small damage which do not result in a System change when not activated by loading, do not lead to a modification of the dynamic response behavior and for that cannot be detected with the proposed global monitoring method. T2 - EURODYN 2011 - 8th International conference on structural dynamics CY - Leuven, Belgium DA - 04.07.2011 KW - Subspace methods KW - Fault detection KW - Monitoring techniques KW - Concrete bridge PY - 2011 SN - 978-90-760-1931-4 IS - MS12 TUE 11:45 SP - 2304 EP - 2310 AN - OPUS4-24689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Döhler, M. A1 - Hille, Falk A1 - Lam, X.-B. A1 - Mevel, L. A1 - Rücker, Werner ED - Proulx, T. T1 - Confidence intervals of modal parameters during progressive damage test N2 - In Operational Modal Analysis, the modal parameters (natural frequencies, damping ratios and mode shapes) obtained from Stochastic Subspace Identification (SSI) of a structure, are afflicted with statistical uncertainty. For evaluating the quality of the obtained results it is essential to know the respective confidence intervals of these figures. In this paper we present algorithms that automatically compute the confidence intervals of modal parameters obtained from covarianceand data-driven SSI of a structure based on vibration measurements. They are applied to the monitoring of the modal parameters of a prestressed concrete highway bridge during a progressive damage test that was accomplished within the European research project IRIS. Results of the covariance- and data-driven SSI are compared. T2 - 29th IMAC - Conference on structural dynamics CY - Jacksonville, FL, USA DA - 31.01.2011 KW - Stochastische subspace basierte Identifikation KW - Schadensdetektion KW - Spannbetonbrücke PY - 2011 SN - 978-1-4419-9304-5 U6 - https://doi.org/10.1007/978-1-4419-9305-2_17 SN - 2191-5644 N1 - Serientitel: Conference Proceedings of the Society for Experimental Mechanics Series – Series title: Conference Proceedings of the Society for Experimental Mechanics Series VL - 4 SP - 237 EP - 250 PB - Springer AN - OPUS4-24335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Döhler, Michael A1 - Hille, Falk A1 - Mevel, L. A1 - Rücker, Werner T1 - Estimation of modal parameters and their uncertainty bounds from subspace-based system identification PY - 2013 SN - 978-3-200-03179-1 IS - Chapter 5 SP - 91 EP - 106 CY - Vienna, Austria AN - OPUS4-29906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Döhler, Michael A1 - Hille, Falk A1 - Mevel, L. A1 - Rücker, Werner T1 - Structural health monitoring with statistical methods during progressive damage test of S101 Bridge N2 - For the last decades vibration based damage detection of engineering structures has become an important issue for maintenance operations on transport infrastructure. Research in vibration based structural damage detection has been rapidly expanding from classic modal parameter estimation to modern operational monitoring. Since structures are subject to unknown ambient excitation in operation conditions, all estimates from the finite data measurements are of statistical nature. The intrinsic uncertainty due to finite data length, colored noise, non-stationary excitations, model order reduction or other operational influences needs to be considered for robust and automated structural health monitoring methods. In this paper, two subspace-based methods are considered that take these statistical uncertainties into account, first modal parameter and their confidence interval estimation for a direct comparison of the structural states, and second a statistical null space based damage detection test that completely avoids the identification step. The performance of both methods is evaluated on a large scale progressive damage test of a prestressed concrete road bridge, the S101 Bridge in Austria. In an on-site test, ambient vibration data of the S101 Bridge was recorded while different damage scenarios were introduced on the bridge as a benchmark for damage identification. It is shown that the proposed damage detection methodology is able to clearly indicate the presence of structural damage, if the damage leads to a change of the structural system. KW - Subspace methods KW - Operational modal analysis KW - Uncertainty bounds KW - Damage detection KW - Prestressed concrete bridge PY - 2014 U6 - https://doi.org/10.1016/j.engstruct.2014.03.010 SN - 0141-0296 VL - 69 SP - 183 EP - 193 PB - Elsevier CY - Oxford AN - OPUS4-30665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -