TY - CONF A1 - Kulla, Hannes A1 - Rademann, K. A1 - Emmerling, Franziska T1 - In situ investigation of mechanochemical reactions with PXRD and Raman spectroscopy - cocrystals of pyrazinamide with dicarboxylic acids N2 - - Cocrystal formation of pyrazinamide with dicarboxylic acids proceeds either directly or via a crystalline intermediate. - Two new crystal structures were discovered by in situ investigations. T2 - ICS 2016 CY - Granada, Spain DA - 30.05.2016 KW - In situ KW - Mechanochemie KW - XRD KW - Cocrystal PY - 2016 AN - OPUS4-36620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kulla, Hannes A1 - Becker, C. A1 - Paulus, B. A1 - Casati, N. A1 - Rademann, K. A1 - Emmerling, Franziska T1 - In situ investigations of a mechanochemical cocrystal formation by X-ray diffraction in two different milling jars N2 - We present an in situ PXRD investigation of the mechanochemical cocrystal formation of pyrazinamide with pimelic acid in two milling jar materials. DFT calculations of the two synthesized polymorphs suggest that the relative stability is based on a conformation change of pyrazinamide in the cocrystal. T2 - 3. BAM-BfR Workshop CY - Berlin, Adlershof, Germany DA - 15.02.2018 KW - Mechanochemistry KW - Cocrystal KW - Polymorph KW - In situ XRD KW - DFT PY - 2018 AN - OPUS4-44315 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kulla, Hannes A1 - Emmerling, Franziska A1 - Rademann, K. T1 - Cocrystals of Pyrazinamide with Dicarboxylic acids T2 - COST-School CY - Berlin, Germany DA - 2015-11-23 PY - 2015 AN - OPUS4-35257 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kulla, Hannes A1 - Becker, C. A1 - Casati, N. A1 - Paulus, B. A1 - Rademann, K. A1 - Emmerling, Franziska T1 - In situ investigations of a mechanochemical cocrystal formation by X-ray diffraction for two different milling jar materials N2 - Mechanochemistry has become a valuable method for the synthesis of new materials, especially for pharmaceutical cocrystals. The Advantages of fast reactions in high purity and yield face a lack of understanding the underlying mechanism. Therefore, in situ setups to study mechanochemical reactions have been established. Herein, we present an in situ investigation of the mechanochemical cocrystal formation of pyrazinamide (PZA) with pimelic acid (PM) using synchrotron XRD. Two new polymorphs of PZA:PM (1:1) were synthesized by milling the starting materials in milling jars of different materials. While Form I is only obtained using a steel jar, Form II can be obtained purely in jars made of Perspex. In situ XRD experiments reveal a direct formation of Form II in Perspex and an intermediate formation of Form II in steel jars converting to Form I upon further grinding. Heating experiments and DFT calculations predict that Form II is the thermodynamically more stable polymorph. Therefore, the reaction progress in the steel jar contradicts Ostwald’s rules of stages as the more stable Form II converts into the metastable Form I. Hence, mechanochemistry offers the possibility to synthesize new materials that cannot be obtained using conventional methods. T2 - Adlershofer Forschungsforum 2017 CY - HU-Berlin, Erwin-Schrödinger Zentrum, Germany DA - 10.11.2017 KW - Cocrystal KW - Mechanochemistry KW - Polymorph KW - In situ KW - Milling PY - 2017 AN - OPUS4-42956 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kulla, Hannes A1 - Becker, Christian A1 - Casati, Nicola A1 - Paulus, Beate A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - In situ PXRD monitoring of a mechanochemical cocrystal formation in milling jars of different material N2 - We present an in situ PXRD investigation of the mechanochemical cocrystal formation of pyrazinamide with pimelic acid in two milling jar materials. In the steel jar a polymorph transformation presenting an exception of Ostwald’s rule of stages is observed. T2 - BESSY User Meeting 2017 CY - Bessy II (HZB), Berlin, Germany DA - 14.12.2017 KW - In situ KW - XRD KW - Polymorph KW - Cocrystal KW - Milling PY - 2017 AN - OPUS4-43502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -