TY - CONF A1 - Kluge, Martin A1 - Ferrero, Fabio A1 - Zeps, Robert A1 - Kreißig, Michael A1 - Steinhübel, Marco T1 - Untersuchung des Zündverhaltens von Tetrafluorethylen/Luft-Gemischen durch Kompressionsvorgänge im Pilot- und Industriemaßstab T2 - 11. Fachtagung Anlagen-, Arbeits- und Umweltsicherheit N2 - Die adiabate Kompression stellt insbesondere für zerfallsfähige Gase eine potentielle Zündquelle sowohl bei Herstellungsprozessen als auch beim Umgang in weiterverarbeitenden Betrieben oder beim Endnutzer dar. So kam es in der Vergangenheit etwa in TFE-verarbeitenden Anlagen wiederholt zu Störfällen durch Adiabate Kompressionsvorgänge des Monomers. Unter dem Begriff „zerfallsfähige Gase“ oder auch „chemisch-instabile Gase“ versteht man Gase, bei denen es auch in Abwesenheit eines Oxidators nach einer Zündung zu einem explosionsartigem Reaktionsverlauf kommen kann, wie es etwa beim Tetrafluorethylen (TFE) der Fall ist. Die Zerfallsreaktion von TFE ist in Gleichung dargestellt. Sobald eine Zündquelle die Zerfallsreaktion initiiert, kann diese bei bestimmten Anfangsbedingungen von Druck und Temperatur explosionsartig verlaufen. Die schnelle Reaktionsrate zusammen mit der hohen Exothermie der Reaktion kann zur Bildung von heftigen Explosionen führen, wie sie sonst nur bei Brenngas/Oxidator-Gernischen üblich sind. T2 - 11. Fachtagung Anlagen-, Arbeits- und Umweltsicherheit CY - Köthen, Germany DA - 07.11.2013 PY - 2013 SN - 978-3-86011-058-4 IS - P-14 SP - 1 EP - 6 AN - OPUS4-30027 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ferrero, Fabio A1 - Kluge, Martin A1 - Hensel, Christina A1 - Kreißig, Michael A1 - Schmidtchen, Ulrich A1 - Holtappels, Kai T1 - Unterfeuerung von Acetylendruckgasbehältern T2 - 10. Fachtagung Anlagen-, Arbeits- und Umweltsicherheit T2 - 10. Fachtagung Anlagen-, Arbeits- und Umweltsicherheit CY - Köthen, Deutschland DA - 2010-11-04 KW - Sicherheit KW - Acetylen KW - Feuer KW - Wasserkühlung KW - Wärmeübertragung PY - 2010 SN - 978-3-89746-119-2 N1 - Geburtsname von Kluge, Martin: Beckmann-Kluge, M. - Birth name of Kluge, Martin: Beckmann-Kluge, M. IS - Paper N-02 SP - 1 EP - 20 CY - Frankfurt/M. AN - OPUS4-22351 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ferrero, Fabio A1 - Kluge, Martin A1 - Kreißig, Michael A1 - Schmidtchen, Ulrich A1 - Holtappels, Kai T1 - Prevention of the explosion of acetylene cylinders involved in fire: experiments and simulations T2 - 23rd ICDERS 2011 N2 - In order to assess the effectiveness of water cooling of acetylene cylinders involved in fire, a total of 13 bonfire tests with 8.9-, 10 and 50-l-cylinders were performed. During the experiments the pressure in the cylinder and the temperature at different locations within the porous material and on the Shell surface as well as the flame temperature were measured. Overall 8 burst tests were performed, in order to determine the times to explosion for the cylinders. Cylinders failed not later than 15 minutes from the ignition of the bonfire, often with generation of a fireball. During the other 5 tests, the fire was extinguished before the expected burst and the cylinder was cooled with water. In 2 of the 5 extinction experiments, the explosion of the cylinder could be prevented. Noticeably, in one case the on-set of the decomposition of acetylene had already been observed, before the cooling was started. In spite of that, the cooling was still effective. The interpretation of the current results and of the data from previous tests with 40-l-cylinder suggests that single acetylene cylinders involved in fire might be saved by cooling, if their pressure does not exceed a value of about 45 bara. The recorded values of pressure and temperature were used to develop and validate a mathematical model for the prediction of the heat transfer in acetylene cylinders during the exposure to fire and the afterward cooling. The predictions agreed well with the experimental results. T2 - 23rd ICDERS 2011 CY - Irvine, CA, USA DA - 24.07.2011 KW - Acetylene KW - Gas cylinders KW - Fire exposure KW - Decomposition PY - 2011 N1 - Geburtsname von Kluge, Martin: Beckmann-Kluge, M. - Birth name of Kluge, Martin: Beckmann-Kluge, M. IS - Paper 132 SP - 1 EP - 6 AN - OPUS4-24153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ferrero, Fabio A1 - Kluge, Martin A1 - Kreißig, Michael A1 - Hensel, Christina A1 - Schmidtchen, Ulrich A1 - Holtappels, Kai T1 - Preventing the explosion of acetylene cylinders involved in fire with help of numerical modeling JF - Journal of loss prevention in the process industries N2 - The current paper describes a mathematical model, which was developed to simulate the heat transfer in acetylene cylinders during exposure to a fire. The cases of a direct engulfment of the cylinder in the flames and of exposure to a distant fire were considered. Furthermore, the model was also applied to the prediction of the heat transfer during the cooling with water of heated acetylene cylinders, in order to assess the effectiveness of this procedure as a measure to prevent the burst of the cylinder. To provide data for the definition and validation of the model a total of 13 bonfire tests with 8.9-, 10- and 50-dm³-cylinders were performed, where pressure and temperature measurements in the samples were performed. During 5 experiments the fire was extinguished before the expected cylinder burst and a cooling with water was applied. In the paper a short description of the experimental set-up and of the test results is given. Finally, a comparison with the model predictions is provided, showing reasonable agreement. KW - Acetylene cylinders KW - Fire KW - Explosion KW - Cooling KW - Numerical model PY - 2012 DO - https://doi.org/10.1016/j.jlp.2011.10.006 SN - 0950-4230 SN - 1873-3352 N1 - Geburtsname von Kluge, Martin: Beckmann-Kluge, M. - Birth name of Kluge, Martin: Beckmann-Kluge, M. VL - 25 IS - 2 SP - 364 EP - 372 PB - Butterworth CY - Guildford, Surrey AN - OPUS4-25137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kluge, Martin A1 - Kreißig, Michael A1 - Liebner, Christian A1 - Spoormaker, Tom ED - DeRademacher, E. ED - Schmelzer, P. T1 - Identifying hazardous conditions for rapid compression scenarios of chemically unstable gases in industrial scaled pipes T2 - Chemical Engineering Transactions N2 - The polymeric industry handles Tetrafluoroethylene (TFE) as basic material for polymer (PTFE) and co-polymer (PCTFE) production. As a chemically unstable gas, it can react in an explosive way, without the presence of any other gases. Once initiated such an exothermic reaction can propagate through the pipe system of a plant and might lead to massive damages and/or fatalities. Especially after maintenance parts of the pipe systems can be filled with TFE, nitrogen or air at pressures up to atmospheric conditions whereas connected parts of pipes might still contain TFE at operating pressure state. Many of the regarding pipes are separated by ball valves, which allow a fast opening procedure. Thereby fast compression of the gas can occur and lead to a massive temperature increase which might induce unwanted reactions. Former tests in laboratory scale described by Meyer (2009) allowed an ignition of a TFE/air system by rapid compression only for a set of sharp defined boundary conditions. First tests in the lower industrial scale were done by Ferrero et al. (2013), where an ignition at typical industrial operating conditions was initiated. The results of the tests indicated that the critical achievable compression temperatures strongly depend on the setup and therefore on the pipe diameter as well. Therefore the necessity of further tests has been pointed out. The original setup presented by Ferrero (2013), which represents the smallest typical industrial size with an inner diameter of 1.125”, was modified to withstand an explosive decomposition reaction and to avoid a deflagration to detonation transition. Different safety concepts as burst discs and time controlled cut-off valves had been tested and evaluated to optimize the experimental setup for reproducible test conditions. This allowed the systematic investigation of the rapid compression of TFE–systems for the first time in the described scale without serious damages after an ignition. In the donor pipe always TFE at high pressure and in the receiving pipe TFE, nitrogen or air were present at an absolute pressure ranging from 500 Pa to atmospheric pressure. The scope was to generate a “hazard diagram” in which the ignition probability in dependence of donor (high) pressure and the receiving (low) pressure is shown. Hazardous conditions can easily be determined. A reference method for the maximum achievable temperatures of non-reacting gas systems was created using an air/air-system. Thus reactive TFE-systems could be evaluated regarding additional exothermic effects. The final hazard diagram demonstrates that there is no sharp limit between a “safe” state and an “ignition” for a TFE/air-system. Rather a transition range exists, which decreases with rising donor pressure. An increased temperature in this range, sometimes combined with small pressure peaks in the profile, indicates first partial restricted reactions near the end flange. The more it gets closer to the “ignition” transition the more traces like soot or undefined solid fractions were found. A TFE/nitrogen- and a TFE/TFE-system could not be ignited at all. A description of the experimental tests as well as a detailed explanation of the hazard diagram will be presented. T2 - 15th International Symposium on Loss Prevention and Safety Promotion in the Process Industries and accompanying exhibition CY - Freiburg, Germany DA - 05.06.2016 KW - explosion KW - adiabatic compression KW - self ignition KW - plant safety KW - decomposable gas KW - fire PY - 2016 SN - 978-88-95608-39-6 DO - https://doi.org/10.3303/CET1648102 SN - 2283-9216 VL - 48 SP - 607 EP - 612 PB - AIDIC Servizi S.r.l. CY - Milano, Italy AN - OPUS4-37917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kluge, Martin A1 - Kreißig, Michael A1 - Liebner, Christian A1 - Spoormaker, T. T1 - Identifizierung von sicherheitstechnisch gefährlichen Bedingungen für schlagartige Kompressionsvorgänge chemisch instabiler Gase im industriellen Maßstab T2 - 12. Fachtagung Anlagen-, Arbeits- und Umweltsicherheit N2 - Tetrafluorethen wird von der Polymerindustrie seit Jahrzenten als monomeres Ausgangsmaterial sowohl für die Herstellung von Polymeren (PTFE) als auch für Kopolymere (PCTFE) eingesetzt. Aufgrund seiner Eigenschaft als chemisch instabiles Gas kann TFE auch ohne Luftsauerstoff oder einen anderen Oxydator explosionsartig zerfallen. Nach der Initiierung des Zerfalls kann dieser unter bestimmten Bedingungen aufgrund des exothermen Reaktionsverhaltens sich selbstständig in Apparaten und Rohrleitungen ausbreiten. Dies geht aufgrund der freigesetzten Reaktionsenthalpie mit einem schlagartigen Anstieg von Druck und Temperatur einher, was zu erheblichen Belastungen der Materialien bis hin zum Versagen und Bruch und möglichen Folgeschäden einschließlich Personenschäden führen kann und in der Vergangenheit bereits mehrfach geführt hat. Besonders nach Wartungsarbeiten besteht die Gefahr, dass Teilabschnitte im Rohrleitungssystem mit TFE, Stickstoff oder Luft gefüllt sind mit Drücken in einem Bereich zwischen technischem Vakuum und atmosphärischem Druck wohingegen angrenzende Rohrabschnitte oder Behälter immer noch TFE bei Betriebsdrücken bis 32 bar enthalten können. Dabei sind die Abschnitte in der Praxis häufig durch Kugelhähne voneinander getrennt, die aufgrund ihrer Öffnungscharakteristik bereits bei geringen Betätigungswinkeln eine große Querschnittsfreigabe für die Strömung im Rohr ermöglichen. Dadurch können schlagartige Kompressionsvorgänge des Gases im Niederdruckbereich ermöglicht werden, die allein aufgrund der thermodynamischen Zustandsänderung zu einer erheblichen Temperaturerhöhung führen und im schlimmsten Fall zur Initiierung der Zerfallsreaktion führen können. Es wird erstmalig ein Versuchsaufbau im Industriemaßstab, der einer explosionsartigen Zerfallsreaktion von TFE standhalten kann. Zahlreiche Sicherheitskonzepte einschließlich diverser Berstscheibenkonfigurationen als auch zeitgesteuerte Schnellschlussventile wurden eingehend untersucht und bewertet, um die optimale Versuchskonfiguration für bestmögliche Reproduzierbarkeit festzulegen. Es fand eine systematische Untersuchung der schlagartigen Kompression der Systeme Luft/Luft, TFE/Luft, TFE/TFE und TFE/N2 statt. In der Hochdrucksektion wurden Drücke bis 30 bar realisiert und im Niederdrucksektor konnten Anfangsdrücke im Bereich weniger Millibar bis hin zu Atmosphärendruck eingestellt werden. Als Hauptergebnis wurde ein „Hazard diagram" erstellt, mit dessen Hilfe die Zündwahrscheinlichkeit in Abhängigkeit vom Hochdruck und Niederdruck abgeschätzt werden kann. Gefährliche Bedingungen in Rohrleitungen können dadurch auf einfachem Weg identifiziert werden. Als Referenzsystem zur Beurteilung der maximal erreichbaren nicht reaktiven Kompressionstemperaturen wurde Luft/Luft verwendet. Die damit ermittelten Daten dienten zur Bewertung von zusätzlichen exothermen Effekten, wie sie etwa bei Vorreaktion des TFE im Falle einer Dimerisierung auftreten können. Entgegen der ursprünglichen Annahme konnten die Systeme TFE/Stickstoff und TFE/TFE im verwendeten Aufbau nicht durch Kompressionsvorgänge gezündet werden. T2 - 12. Fachtagung Anlagen-, Arbeits- und Umweltsicherheit CY - Köthen, Germany DA - 05.11.2015 KW - Tetrafluoroethen KW - Zerfall KW - Selbstentzündung KW - Adiabate Kompression PY - 2015 SN - 978-3-86011-091-1 SP - 1 EP - 10 AN - OPUS4-34852 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -