TY - CONF A1 - Sieg, H. A1 - Lehmann, C. A1 - Kästner, Claudia A1 - Krause, B. A1 - Burel, A. A1 - Chevance, S. A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Tentschert, J. A1 - Bräuning, A. A1 - Laux, A. A1 - Thünemann, Andreas A1 - Loipis, I. E. A1 - Fessard, V. A1 - Luch, A. A1 - Lampen, A. T1 - Effects of Al-, Ti- and Zn-containing nanomaterials on cell lines in vitro T2 - TOXICOLOGY LETTERS N2 - Among the different tested endpoints, Al- and Ticontaining nanomaterials did notshowany toxicity in intestinal cell lines in vitro. Nevertheless, this absence of effect was not due to an absence of exposure, since particle-specific uptake was reported. Metal particle uptake over a long time period might therefore be relevant for risk assessment of aluminum- and titanium-containing food products. T2 - 52nd Congress of the European-Societies-of-Toxicology (EUROTOX) CY - Seville, Spain DA - 04.09.2017 KW - Nanoparticles PY - 2017 DO - https://doi.org/10.1016/j.toxlet.2016.06.1954 SN - 0378-4274 VL - 258 SP - S272 PB - Elsevier Ltd. AN - OPUS4-40939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Juling, S. A1 - Niedzwiecka, A. A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Selve, S. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Krause, E. A1 - Lampen, A. T1 - Protein Corona Analysis of Silver Nanoparticles Links to Their Cellular Effects JF - Journal of proteome research N2 - The breadth of applications of nanoparticles and the access to food-associated consumer products containing nanosized materials lead to oral human exposure to such particles. In biological fluids nanoparticles dynamically interact with biomolecules and form a protein corona. Knowledge about the protein corona is of great interest for understanding the molecular effects of particles as well as their fate inside the human body. We used a mass spectrometry-based toxicoproteomics approach to elucidate mechanisms of toxicity of silver nanoparticles and to comprehensively characterize the protein corona formed around silver nanoparticles in Caco-2 human intestinal epithelial cells. Results were compared with respect to the cellular function of proteins either affected by exposure to nanoparticles or present in the protein corona. A transcriptomic data set was included in the analyses in order to obtain a combined multiomics view of nanoparticle-affected cellular processes. A relationship between corona proteins and the proteomic or transcriptomic responses was revealed, showing that differentially regulated proteins or transcripts were engaged in the same cellular signaling pathways. Protein corona analyses of nanoparticles in cells might therefore help in obtaining information about the molecular consequences of nanoparticle treatment. KW - Silver nanoparticles KW - Protein KW - Small-angle X-ray scattering KW - SAXS PY - 2017 DO - https://doi.org/10.1021/acs.jproteome.7b00412 SN - 1535-3893 SN - 1535-3907 VL - 16 IS - 11 SP - 4020 EP - 4034 PB - Americal Chemical Society AN - OPUS4-42688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, H. A1 - Kästner, Claudia A1 - Krause, B. A1 - Meyer, T. A1 - Burel, A. A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Laux, P. A1 - Braeuning, A. A1 - Estreal-Lopis, I. A1 - Gauffre, F. A1 - Fessard, V. A1 - Meijer, J. A1 - Luch, A. A1 - Thünemann, Andreas A1 - Lampen, A. T1 - Impact of an artificial digestion procedure on aluminum-containing nanomaterials JF - Langmuir N2 - Aluminum has gathered toxicological Attention based on relevant human exposure and its suspected hazardous potential. Nanoparticles from food supplements or Food contact materials may reach the human gastrointestinal tract. Here, we monitored the physicochemical fate of aluminum containing nanoparticles and aluminum ions when passaging an in vitro model of the human gastrointestinal tract. Smallangle X-ray scattering (SAXS), transmission electron microscopy (TEM), ion beam microscopy (IBM), secondary ion beam mass spectrometry (TOF-SIMS), and inductively coupled plasma mass spectrometry (ICP-MS) in the singleparticle mode were employed to characterize two aluminumcontaining nanomaterials with different particle core materials (Al0, γAl2O3) and soluble AlCl3. Particle size and shape remained unchanged in saliva, whereas strong Agglomeration of both aluminum nanoparticle species was observed at low pH in gastric fluid together with an increased ion release. The levels of free aluminum ions decreased in intestinal fluid and the particles deagglomerated, thus liberating primary particles again. Dissolution of nanoparticles was limited and substantial changes of their shape and size were not detected. The amounts of particle-associated phosphorus, chlorine, potassium, and calcium increased in intestinal fluid, as compared to nanoparticles in standard dispersion. Interestingly, nanoparticles were found in the intestinal fluid after addition of ionic aluminum. We provide a comprehensive characterization of the fate of aluminum nanoparticles in simulated gastrointestinal fluids, demonstrating that orally ingested nanoparticles probably reach the intestinal epithelium. The balance between dissolution and de novo complex formation should be considered when evaluating nanotoxicological experiments. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle PY - 2017 DO - https://doi.org/10.1021/acs.langmuir.7b02729 SN - 1520-5827 SN - 0743-7463 VL - 33 IS - 40 SP - 10726 EP - 10735 PB - Americal Chemical Society AN - OPUS4-42438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -