TY - JOUR A1 - Menga, D. A1 - Low, J. L. A1 - Li, Y.-S. A1 - Arcon, I. A1 - Koyutürk, B. A1 - Wagner, F. A1 - Ruiz-Zepeda, F. A1 - Gaberscek, M. A1 - Paulus, B. A1 - Fellinger, Tim-Patrick T1 - Resolving the Dilemma of Fe-N-C Catalysts by the Selective Synthesis of Tetrapyrrolic Active Sites via an Imprinting Strategy N2 - Combining the abundance and inexpensiveness of their constituent elements with their atomic dispersion, atomically dispersed Fe−N−C catalysts represent the most promising alternative to precious-metal-based materials in proton Exchange membrane (PEM) fuel cells. Due to the high temperatures involved in their synthesis and the sensitivity of Fe ions toward carbothermal reduction, current synthetic methods are intrinsically limited in type and amount of the desired, catalytically active Fe−N4 sites, and high active site densities have been out of reach (dilemma of Fe−N−C catalysts). We herein identify a paradigm change in the synthesis of Fe−N−C catalysts arising from the developments of other M−N−C single-atom catalysts. Supported by DFT calculations we propose fundamental principles for the synthesis of M−N−C materials. We further exploit the proposed principles in a novel synthetic strategy to surpass the dilemma of Fe−N−C catalysts. The selective formation of tetrapyrrolic Zn−N4 sites in a tailor-made Zn−N−C material is utilized as an active-site imprint for the preparation of a corresponding Fe−N−C catalyst. By successive low- and high-temperature ion exchange reactions, we obtain a phase-pure Fe−N−C catalyst, with a high loading of atomically dispersed Fe (>3 wt %). Moreover, the catalyst is entirely composed of tetrapyrrolic Fe−N4 sites. The density of tetrapyrrolic Fe−N4 sites is more than six times as high as for previously reported tetrapyrrolic single-site Fe−N−C fuel cell catalysts. KW - Fe-N-C catalyst KW - Precious-group metal-free catalyst KW - Tetrapyrrolic active-site KW - Single-site catalyst KW - Fuel cell KW - Carbon materials PY - 2021 DO - https://doi.org/10.1021/jacs.1c04884 SN - 1520-5126 VL - 143 IS - 43 SP - 18010 EP - 18019 PB - American Chemical Society AN - OPUS4-53657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koyutürk, B. A1 - Farber, E. A1 - Wagner, F. A1 - Fellinger, Tim-Patrick A1 - Eisenberg, D. T1 - A simple decagram-scale synthesis of an atomically dispersed, hierarchically porous Fe–N–C catalyst for acidic ORR N2 - Carbons doped with iron and nitrogen (Fe–N–Cs) are highly promising electrocatalysts for energy conversion reactions in the oxygen, nitrogen and carbon cycles. Containing no platinum group metals, they nevertheless compete with platinum-based catalysts in crucial fuel cell reactions, such as oxygen reduction in acid. Yet deployment of Fe–N–Cs in fuel cells requires also a flow-enhancing pore structure, and a scalable synthesis procedure – a rarely-met combination of requirements. We now report such a simple synthesis of over 10 g of an Fe–N–C catalyst with high activity towards oxygen reduction in acid. Atomically-dispersed Fe–N4 active sites were designed orthogonally and simultaneously with hierarchical micro-, meso- and macroporosity, by exploiting a dual role of magnesium ions during pyrolysis. Combining the “active site imprinting” and “self-templating” strategies in a single novel magnesium iminodiacetate precursor yielded a catalyst with high specific surface area (SSA > 1600 m2 g−1), a flow-enhancing hierarchical porosity, and high relative abundance of the most desirable D1-type Fe–N4 sites (43%, by Mössbauer spectroscopy at 4.2 K). Despite the relatively low iron contents, the catalysts feature halfwave potentials up to 0.70 V vs. RHE at pH 1 and a mass activity of 1.22 A g−1 at 0.8 V vs. RHE in RDE experiments. Thanks to the simple and scalable synthesis, this active and stable catalyst may serve as a workhorse in academic and industrial research into atomically-dispersed ORR electrocatalysis. KW - Catalysis KW - Fe-N-C catalysts KW - Fuel Cells KW - Electrochemistry PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550113 DO - https://doi.org/10.1039/d2ta00925k SN - 2050-7488 SP - 1 EP - 10 PB - Royal Society of Chemistry AN - OPUS4-55011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -