TY - JOUR A1 - Zhang, Zhiyang A1 - Li, Y. A1 - Frisch, J. A1 - Bär, M. A1 - Rappich, J. A1 - Kneipp, Janina T1 - In situ surface-enhanced Raman scattering shows ligand-enhanced hot electron harvesting on silver, gold, and copper nanoparticles JF - Journal of Catalysis N2 - Hot carriers (electrons and holes) generated from the decay of localized surface plasmon resonances can take a major role in catalytic reactions on metal nanoparticles. By obtaining surface enhanced Raman scattering (SERS) spectra of p-aminothiophenol as product of the reduction of p-nitrothiophenol by hot electrons, different catalytic activity is revealed here for nanoparticles of silver, gold, and copper. As a main finding, a series of different ligands, comprising halide and non-halide species, are found to enhance product formation in the reduction reaction on nanoparticles of all three metals. A comparison with the standard electrode potentials of the metals with and without the ligands and SERS data obtained at different electrode potential indicate that the higher catalytic activity can be associated with a higher Fermi level, thereby resulting in an improved efficiency of hot carrier generation. The concept of such a ligand-enhanced hot electron reduction provides a way to make light-to-chemical energy conversion more efficient due to improved electron harvesting. KW - Ligands KW - Hot electrons KW - SERS KW - p-Nitrothiophenol KW - p-Aminothiophenol PY - 2020 DO - https://doi.org/10.1016/j.jcat.2020.01.006 VL - 383 SP - 153 EP - 159 PB - Elsevier Inc. CY - Amsterdam, NL AN - OPUS4-50626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Orts Gil, Guillermo A1 - Natte, Kishore A1 - Drescher, Daniela A1 - Bresch, Harald A1 - Mantion, Alexandre A1 - Kneipp, J. A1 - Österle, Werner T1 - Characterisation of silica nanoparticles prior to in vitro studies: from primary particles to agglomerates JF - Journal of nanoparticle research N2 - The size, surface charge and agglomeration state of nanoparticles under physiological conditions are fundamental parameters to be determined prior to their application in toxicological studies. Although silica-based materials are among the most promising candidates for biomedical applications, more systematic studies concerning the characterisation before performing toxicological studies are necessary. This interest is based on the necessity to elucidate the mechanisms affecting its toxicity. We present here TEM, SAXS and SMPS as a combination of methods allowing an accurate determination of single nanoparticle sizes. For the commercial material, Ludox TM50 single particle sizes around 30 nm were found in solution. DLS measurements of single particles are rather affected by polydispersity and particles concentration but this technique is useful to monitor their agglomeration state. Here, the influence of nanoparticle concentration, ionic strength (IS), pH and bath sonication on the agglomeration behaviour of silica particles in solution has been systematically investigated. Moreover, the colloidal stability of silica particles in the presence of BSA has been investigated showing a correlation between silica and protein concentrations and the formation of agglomerates. Finally, the colloidal stability of silica particles in standard cell culture medium has been tested, concluding the necessity of surface modification in order to preserve silica as primary particles in the presence of serum. The results presented here have major implications on toxicity investigations because silica agglomeration will change the probability and uptake mechanisms and thereby may affect toxicity. KW - Silica KW - Toxicology KW - Agglomeration KW - BSA KW - Nanoparticles KW - Characterisation PY - 2011 DO - https://doi.org/10.1007/s11051-010-9910-9 SN - 1388-0764 SN - 1572-896X VL - 13 IS - 4 SP - 1593 EP - 1604 PB - Springer AN - OPUS4-21179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zancajo, V. M. R. A1 - Lindtner, T. A1 - Eisele, M. A1 - Huber, A. J. A1 - Elbaum, R. A1 - Kneipp, Janina T1 - FTIR Nanospectroscopy Shows Molecular Structures of Plant Biominerals and Cell Walls JF - Analytical Chemistry N2 - Plant tissues are complex composite structures of organic and inorganic components whose function relies on molecular heterogeneity at the nanometer scale. Scattering-type near-field optical microscopy (s-SNOM) in the mid-infrared (IR) region is used here to collect IR nanospectra from both fixed and native plant samples. We compared structures of chemically extracted silica bodies (phytoliths) to silicified and nonsilicified cell walls prepared as a flat block of epoxy-embedded awns of wheat (Triticum turgidum), thin sections of native epidermis cells from sorghum (Sorghum bicolor) comprising silica phytoliths, and isolated cells from awns of oats (Avena sterilis). The correlation of the scanning-probe IR images and the mechanical phase image enables a combined probing of mechanical material properties together with the chemical composition and structure of both the cell walls and the phytolith structures. The data reveal a structural heterogeneity of the different silica bodies in situ, as well as different compositions and crystallinities of cell wall components. In conclusion, IR nanospectroscopy is suggested as an ideal tool for studies of native plant materials of varied origins and preparations and could be applied to other inorganic–organic hybrid materials. KW - Cells KW - Plants KW - Organic polymers KW - Silica KW - Infrared light PY - 2020 DO - https://doi.org/10.1021/acs.analchem.0c00271 SN - 0003-2700 VL - 92 IS - 20 SP - 13694 EP - 13701 PB - ACS Publications AN - OPUS4-54445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drescher, D. A1 - Büchner, T. A1 - Schrade, P. A1 - Traub, Heike A1 - Werner, S. A1 - Guttmann, P. A1 - Bachmann, S. A1 - Kneipp, J. T1 - Influence of Nuclear Localization Sequences on the Intracellular Fate of Gold Nanoparticles JF - ACS Nano N2 - Directing nanoparticles to the nucleus by attachment of nuclear localization sequences (NLS) is an aim in many applications. Gold nanoparticles modified with two different NLS were studied while crossing barriers of intact cells, including uptake, endosomal escape, and nuclear translocation. By imaging of the nanoparticles and by characterization of their molecular interactions with surface-enhanced Raman scattering (SERS), it is shown that nuclear translocation strongly depends on the particular incubation conditions. After an 1 h of incubation followed by a 24 h chase time, 14 nm gold particles carrying an adenoviral NLS are localized in endosomes, in the cytoplasm, and in the nucleus of fibroblast cells. In contrast, the cells display no nanoparticles in the cytoplasm or nucleus when continuously incubated with the nanoparticles for 24 h. The ultrastructural and spectroscopic data indicate different processing of NLS-functionalized particles in endosomes compared to unmodified particles. NLS functionalized nanoparticles form larger intraendosomal aggregates than unmodified gold nanoparticles. SERS spectra of cells with NLS-functionalized gold nanoparticles contain bands assigned to DNA and were clearly different from those with unmodified gold nanoparticles. The different processing in the presence of an NLS is influenced by a continuous exposure of the cells to nanoparticles and an ongoing nanoparticle uptake. This is supported by mass-spectrometry-based quantification that indicates enhanced uptake of NLS-functionalized nanoparticles compared to unmodified particles under the same conditions. The results contribute to the optimization of nanoparticle analysis in cells in a variety of applications, e.g., in theranostics, biotechnology, and bioanalytics. KW - Nanoparticle KW - Laser ablation KW - SERS KW - ICP-MS PY - 2021 DO - https://doi.org/10.1021/acsnano.1c04925 SN - 1936-086X VL - 15 IS - 9 SP - 14838 EP - 14849 PB - American Chemical Society AN - OPUS4-54047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Büchner, T. A1 - Drescher, D. A1 - Merk, V. A1 - Traub, Heike A1 - Guttmann, P. A1 - Werner, St. A1 - Jakubowski, Norbert A1 - Schneider, G. A1 - Kneipp, J. T1 - Biomolecular environment, quantification, and intracellular interaction of multifunctional magnetic SERS nanoprobes JF - Analyst N2 - Multifunctional composite nanoprobes consisting of iron oxide nanoparticles linked to silver and gold nanoparticles, Ag–Magnetite and Au–Magnetite, respectively, were introduced by endocytic uptake into cultured fibroblast cells. The cells containing the non-toxic nanoprobes were shown to be displaceable in an external magnetic field and can be manipulated in microfluidic channels. The distribution of the composite nanostructures that are contained in the endosomal system is discussed on the basis of surfaceenhanced Raman scattering (SERS) mapping, quantitative laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) micromapping, and cryo soft X-ray tomography (cryo soft-XRT). Cryo soft-XRT of intact, vitrified cells reveals that the composite nanoprobes form intra-endosomal aggregates. The nanoprobes provide SERS signals from the biomolecular composition of their surface in the endosomal environment. The SERS data indicate the high stability of the nanoprobes and of their plasmonic properties in the harsh environment of endosomes and lysosomes. The spectra point at the molecular composition at the surface of the Ag–Magnetite and Au–Magnetite nanostructures that is very similar to that of other Composite structures, but different from the composition of pure silver and gold SERS nanoprobes used for intracellular investigations. As shown by the LA-ICP-MS data, the uptake efficiency of the magnetite composites is approximately two to three times higher than that of the pure gold and silver nanoparticles. KW - Nanoparticles KW - SERS KW - Cell KW - LA-ICP-MS KW - X-ray tomography PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-371811 DO - https://doi.org/10.1039/c6an00890a SN - 0003-2654 VL - 141 IS - 17 SP - 5096 EP - 5106 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-37181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drescher, D. A1 - Traub, Heike A1 - Büchner, T. A1 - Jakubowski, Norbert A1 - Kneipp, J. T1 - Properties of in situ generated gold nanoparticles in the cellular context JF - Nanoscale N2 - Gold nanostructures that serve as probes for nanospectroscopic analysis of eukaryotic cell cultures can be obtained by the in situ reduction of tetrachloroauric acid (HAuCl4). To understand the formation process of such intracellularly grown particles depending on the incubation medium, the reaction was carried out with 3T3 fibroblast cells in three different incubation media, phosphate buffer, Dulbecco's Modified Eagle Medium (DMEM), and standard cell culture medium (DMEM with fetal calf serum). The size, the optical properties, the biomolecular corona, and the localization of the gold nanoparticles formed in situ vary for the different conditions. The combination of surface-enhanced Raman scattering (SERS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) microscopic mapping and transmission electron microscopy (TEM) provides complementary perspectives on plasmonic nanoparticles and non-plasmonic gold compounds inside the cells. While for the incubation with HAuCl4 in PBS, gold particles provide optical signals from the nucleus, the incubation in standard cell culture medium leads to scavenging of the toxic molecules and the formation of spots of high gold concentration in the cytoplasm without formation of SERS-active particles inside the cells. The biomolecular corona of nanoparticles formed in situ after incubation in buffer and DMEM differs, suggesting that different intracellular molecular species serve for reduction and stabilization. Comparison with data obtained from ready-made gold nanoparticles suggests complementary application of in situ and ex situ generated nanostructures for optical probing. KW - Nanoparticles KW - Laser ablation KW - ICP-MS KW - SERS KW - Cell PY - 2017 DO - https://doi.org/10.1039/C7NR04620K SN - 2040-3372 VL - 9 IS - 32 SP - 11647 EP - 11656 PB - The Royal Society of Chemistry RSC CY - Cambridge, UK AN - OPUS4-41871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schulte, Franziska A1 - Lingott, J. A1 - Panne, Ulrich A1 - Kneipp, Janina T1 - Chemical characterization and classification of Pollen JF - Analytical chemistry N2 - We report on the in situ characterization of tree pollen molecular composition based on Raman spectroscopy. Different from purification-based analysis, the nondestructive approach allows (i) to analyze various classes of molecules simultaneously at microscopic resolution and (ii) to acquire fingerprint-like chemical information that was used for the classification of pollen from different species. Hierarchical cluster analysis of spectra from fresh pollen samples of 15 species partly related at the genus level and family level indicates separation of species based on the complete Raman spectral signature and yields classification in accord with biological systematics. The results have implications for the further elucidation of pollen biochemistry and also for the development of chemistry-based online pollen identification methods. PY - 2008 DO - https://doi.org/10.1021/ac801791a SN - 0003-2700 SN - 1520-6882 SP - 1 EP - 12 PB - American Chemical Society CY - Washington, DC AN - OPUS4-18234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schulte, Franziska A1 - Mäder, J. A1 - Kroh, L.W. A1 - Panne, Ulrich A1 - Kneipp, Janina T1 - Characterization of pollen carotenoids with in situ and high-performance thin-layer chromatography supported resonant Raman spectroscopy JF - Analytical chemistry N2 - Raman signatures of the carotenoid component are studied in individual pollen grains from different species of trees. The information is obtained as differences in the strong pre-resonant Raman spectra measured before and after photodepletion of the carotenoid molecules. The results provide the first in situ evidence of interspecies differences in pollen carotenoid content, structure, and/or assembly between plant species without prior purification. The analysis of carotenoids in situ is confirmed by high-performance thin-layer chromatography (HPTLC)-supported resonance Raman data measured directly on the HPTLC plates after separation of carotenoids in pollen extracts. Utilization of the in situ, extraction-free procedure in carotenoid analysis will improve sensitivity and structural selectivity and provides insight into carotenoid structure and composition in single pollen grains. PY - 2009 DO - https://doi.org/10.1021/ac901389p SN - 0003-2700 SN - 1520-6882 VL - 81 IS - 20 SP - 8426 EP - 8433 PB - American Chemical Society CY - Washington, DC AN - OPUS4-20260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -