TY - JOUR A1 - Stratulat, C. A1 - Ginghina, R. E. A1 - Bratu, A. E. A1 - Isleyen, A. A1 - Tunc, M. A1 - Hafner-Vuk, K. A1 - Frey, A. M. A1 - Kjeldsen, H. A1 - Vogl, Jochen T1 - Development- and Validation-Improved Metrological Methods for the Determination of Inorganic Impurities and Ash Content from Biofuels N2 - In this study, five laboratories, namely, BRML (Romania), TUBITAK UME (Turkey), IMBIH (Bosnia and Herzegovina), BAM (Germany), and DTI (Denmark), developed and validated analytical procedures by ICP-MS, ICP-OES, MWP-AES, WD-XRF, and ID-MS for the determination of inorganic impurities in solid and liquid biofuels, established the budget of uncertainties, and developed the method for determining the amount of ash in the measurement range 0–1.2% with absolute repeatability less than 0.1% and absolute reproducibility of 0.2% (according to EN ISO 18122). In order to create homogeneous certified reference materials, improved methodologies for the measurement and characterization of solid and liquid biofuels were developed. Thus, information regarding the precision, accuracy, and bias of the method, and identifying the factors that intervened in the measurement of uncertainty were experimentally determined, supplementing the information from the existing standards in the field. KW - Development KW - Validate method KW - Biodiesel KW - ICP-MS KW - ICP-OES KW - MW-AES KW - WD-XRF KW - ID-MS KW - Inorganic impurities KW - Ash content KW - Wood chips PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578743 DO - https://doi.org/10.3390/en16135221 VL - 16 IS - 13 SP - 1 EP - 14 PB - MDPI AN - OPUS4-57874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krenek, S. A1 - Eisermann, R. A1 - Failleau, G. A1 - Lu, Xin A1 - Thomas, P. A1 - Kjeldsen, H. A1 - Anhalt, K. T1 - Fibre-optic thermometry to support the clean energy transition N2 - The measurement and control of temperature plays a key role in achieving the European Green Deal targets for a low carbon energy system. Fibre-optic thermometry is an emerging technology that can improve temperature measurement in extreme environments for energy providers and industry due to its distributed sensing and immunity to electromagnetic fields. Various applications for optimisation and monitoring in the energy sector are described, covering the whole range from energy generation to transmission and consumption. However, fibre-optic thermometers have cross sensitivities to other quantities (e.g., strain and humidity) and ageing effects that need to be investigated, quantified and minimised to obtain traceable and reliable measurements. This is particularly important so that applications in critical infrastructure can benefit from future measurements that are not possible with conventional sensors. The European INFOTherm project aims to overcome the limitations that currently prevent the widespread use of fibre-optic thermometry by creating a dedicated European metrology infrastructure for research, development and calibration. First results on measurement uncertainty, improvement of measurement techniques and practical field tests are presented. KW - Industrial processes optimisation KW - Fibre-optic thermometry KW - Distributed temperature sensing KW - Traceability KW - Thermal energy storage KW - Electrical grid resilience PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-640075 DO - https://doi.org/10.1515/teme-2025-0044 SN - 2196-7113 VL - 92 IS - 9-10 SP - 392 EP - 405 PB - De Gruyter Brill AN - OPUS4-64007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -