TY - JOUR A1 - Fricke, F. A1 - Mahmood, S. A1 - Hoffmann, J. A1 - Brandalero, M. A1 - Liehr, Sascha A1 - Kern, Simon A1 - Meyer, Klas A1 - Kowarik, S. A1 - Westerdick, S. A1 - Maiwald, Michael A1 - Hübner, M. T1 - Artificial Intelligence for Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy N2 - Mass Spectrometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR) are critical components of every industrial chemical process as they provide information on the concentrations of individual compounds and by-products. These processes are carried out manually and by a specialist, which takes a substantial amount of time and prevents their utilization for real-time closed-loop process control. This paper presents recent advances from two projects that use Artificial Neural Networks (ANNs) to address the challenges of automation and performance-efficient realizations of MS and NMR. In the first part, a complete toolchain has been developed to develop simulated spectra and train ANNs to identify compounds in MS. In the second part, a limited number of experimental NMR spectra have been augmented by simulated spectra to train an ANN with better prediction performance and speed than state-of-theart analysis. These results suggest that, in the context of the digital transformation of the process industry, we are now on the threshold of a possible strongly simplified use of MS and MRS and the accompanying data evaluation by machine-supported procedures, and can utilize both methods much wider for reaction and process monitoring or quality control. T2 - 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) CY - Grenoble, France DA - 01.02.2021 KW - Industry 4.0, KW - Cyber-physical systems KW - Artificial neural networks KW - Mass spectrometry KW - Nuclear magnetic resonance spectroscopy PY - 2021 DO - https://doi.org/10.23919/DATE51398.2021.9473958 SP - 615 EP - 620 PB - IEEE AN - OPUS4-55360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fricke, F. A1 - Mahmood, S. A1 - Hoffmann, J. A1 - Brandalero, M. A1 - Liehr, Sascha A1 - Kern, Simon A1 - Meyer, Klas A1 - Kowarik, Stefan A1 - Westerdicky, S. A1 - Maiwald, Michael A1 - Hübner, M. T1 - Artificial Intelligence for Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy N2 - Mass Spectrometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR) are critical components of every industrial chemical process as they provide information on the concentrations of individual compounds and by-products. These processes are carried out manually and by a specialist, which takes a substantial amount of time and prevents their utilization for real-time closed-loop process control. This paper presents recent advances from two projects that use Artificial Neural Networks (ANNs) to address the challenges of automation and performance-efficient realizations of MS and NMR. In the first part, a complete toolchain has been developed to develop simulated spectra and train ANNs to identify compounds in MS. In the second part, a limited number of experimental NMR spectra have been augmented by simulated spectra to train an ANN with better prediction performance and speed than state-of-theart analysis. These results suggest that, in the context of the digital transformation of the process industry, we are now on the threshold of a possible strongly simplified use of MS and MRS and the accompanying data evaluation by machine-supported procedures, and can utilize both methods much wider for reaction and process monitoring or quality control. T2 - 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) CY - Online meeting DA - 01.02.2021 KW - Industry 4.0 KW - Cyber-Physical Systems KW - Artificial Neural Networks KW - Mass Spectrometry KW - Nuclear Magnetic Resonance Spectroscopy PY - 2021 UR - www.date-conference.com SN - 978-3-9819263-5-4 SP - 615 EP - 620 PB - Research Publishing AN - OPUS4-52180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fricke, F. A1 - Brandalero, M. A1 - Liehr, Sascha A1 - Kern, Simon A1 - Meyer, Klas A1 - Kowarik, Stefan A1 - Hierzegger, R. A1 - Westerdick, S. A1 - Maiwald, Michael A1 - Hübner, M. T1 - Artificial Intelligence for Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy Using a Novel Data Augmentation Method N2 - Mass Spectrometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR) are valuable analytical and quality control methods for most industrial chemical processes as they provide information on the concentrations of individual compounds and by-products. These processes are traditionally carried out manually and by a specialist, which takes a substantial amount of time and prevents their utilization for real-time closed-loop process control. This paper presents recent advances from two projects that use Artificial Neural Networks (ANNs) to address the challenges of automation and performance-efficient realizations of MS and NMR. In the first part, a complete toolchain has been realized to develop simulated spectra and train ANNs to identify compounds in MS. In the second part, a limited number of experimental NMR spectra have been augmented by simulated spectra, to train an ANN with better prediction performance and speed than state-of-the-art analysis. These results suggest that, in the context of the digital transformation of the process industry, we are now on the threshold of a strongly simplified use of MS and MRS and the accompanying data evaluation by machine-supported procedures, and can utilize both methods much wider for reaction and process monitoring or quality control. KW - Industry 4.0 KW - Cyber-Physical Systems KW - Artificial Neural Networks KW - Mass Spectrometry KW - Nuclear Magnetic Resonance Spectroscopy KW - Modular Production PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539412 UR - https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9638378 DO - https://doi.org/10.1109/TETC.2021.3131371 SN - 2168-6750 VL - 10 IS - 1 SP - 87 EP - 98 PB - IEEE AN - OPUS4-53941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Wolf, Jakob A1 - Meyer, Klas A1 - Kern, S. A1 - Angelone, D. A1 - Leonov, A. A1 - Cronin, L. A1 - Emmerling, Franziska T1 - Standardization and control of Grignard reactions in a universal chemical synthesis machine using online NMR T1 - Standardisierung und Kontrolle von Grignard-Reaktionen mittels Online-NMR in einer universellen chemischen Syntheseplattform N2 - A big problem with the chemistry literature is that it is not standardized with respect to precise operational parameters, and real time corrections are hard to make without expert knowledge. This lack of context means difficult reproducibility because many steps are ambiguous, and hence depend on tacit knowledge. Here we present the integration of online NMR into an automated chemical synthesis machine (CSM aka. “Chemputer” which is capable of small-molecule synthesis using a universal programming language) to allow automated analysis and adjustment of reactions on the fly. The system was validated and benchmarked by using Grignard reactions which were chosen due to their importance in synthesis. The system was monitored in real time using online-NMR, and spectra were measured continuously during the reactions. This shows that the synthesis being done in the Chemputer can be dynamically controlled in response to feedback optimizing the reaction conditions according to the user requirements. N2 - Ein Problem der chemischen Literatur ist die fehlende Standardisierung bezüglich genauer Bedingungen, auch Echtzeit-Korrekturen sind ohne Expertenwissen nur schwer möglich. Dieser Mangel an Details erschwert experimentelle Reproduzierbarkeit, da Schritte oft mehrdeutig sind und daher von implizitem Wissen abhängen. Hier präsentieren wir die Integration von Online-NMR Spektroskopie in eine automatisierte chemische Syntheseplattform (CSM aka. “Chemputer”, unter Verwendung einer universellen Programmiersprache zur Synthese kleiner Moleküle fähig), um eine automatisierte Analyse und Anpassung von Reaktionen im laufenden Betrieb zu ermöglichen. Das System wurde anhand von Grignard-Reaktionen, die aufgrund ihrer Bedeutung für die Synthese ausgewählt wurden, validiert und einem Härtetest unterzogen. Synthesen wurden in Echtzeit mit Online-NMR überwacht, und die Spektren wurden während der Reaktionen kontinuierlich aufgenommen und analysiert. Dies zeigt, dass der Chemputer dynamisch mittels einer Regelung kontrolliert werden kann, um die Reaktionsbedingungen entsprechend den Anforderungen des Benutzers zu optimieren. KW - Grignard reaction KW - NMR spectroscopy KW - Process analytical technology KW - Process control KW - Grignard-Reaktion KW - NMR-Spektroskopie KW - Prozessanalytik KW - Prozesskontrolle PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531260 DO - https://doi.org/10.1002/anie.202106323 SN - 1521-3773 SN - 1433-7851 N1 - Bibliografische Angaben für die deutsche Version: Angewandte Chemie 2021, Jg. 133, S. 1–7, ISSN 0044-8249, ISSN 1521-3757, https://doi.org/10.1002/ange.202106323 - Bibliographic information for the German version: Angewandte Chemie 2021, vol. 133, p. 1–7, ISSN 0044-8249, ISSN 1521-3757, https://doi.org/10.1002/ange.202106323 VL - 60 IS - 43 SP - 1 EP - 6 PB - Wiley-VCH CY - Weinheim AN - OPUS4-53126 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -