TY - JOUR A1 - Prinz, J. A1 - Schreiber, B. A1 - Olejko, L. A1 - Oertel, J. A1 - Rackwitz, J. A1 - Keller, A. A1 - Bald, Ilko T1 - DNA origami substrates for highly sensitive surface-enhanced Raman scattering N2 - DNA nanotechnology holds great promise for the fabrication of novel plasmonic nanostructures and the potential to carry out single-molecule measurements using optical spectroscopy. Here, we demonstrate for the first time that DNA origami nanostructures can be exploited as substrates for surface-enhanced Raman scattering (SERS). Gold nanoparticles (AuNPs) have been arranged into dimers to create intense Raman scattering hot spots in the interparticle gaps. AuNPs (15 nm) covered with TAMRA-modified DNA have been placed at a nominal distance of 25 nm to demonstrate the formation of Raman hot spots. To control the plasmonic coupling between the nanoparticles and thus the field enhancement in the hot spot, the size of AuNPs has been varied from 5 to 28 nm by electroless Au deposition. By the precise positioning of a specific number of TAMRA molecules in these hot spots, SERS with the highest sensitivity down to the few-molecule level is obtained. KW - DANN Origami KW - Surface-enhanced Raman scattering KW - Nanoparticles KW - TAMRA PY - 2013 U6 - https://doi.org/10.1021/jz402076b SN - 1948-7185 VL - 4 IS - 23 SP - 4140 EP - 4145 PB - ACS CY - Washington, DC AN - OPUS4-29907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oertel, J. A1 - Keller, A. A1 - Prinz, J. A1 - Schreiber, B. A1 - Hübner, R. A1 - Kerbusch, J. A1 - Bald, Ilko A1 - Fahmy, K. T1 - Anisotropic metal growth on phospholipid nanodiscs via lipid bilayer expansion N2 - Self-assembling biomolecules provide attractive templates for the preparation of metallic nanostructures. However, the intuitive transfer of the “outer shape” of the assembled macromolecules to the final metallic particle depends on the intermolecular forces among the biomolecules which compete with interactions between template molecules and the metal during metallization. The shape of the bio-template may thus be more dynamic than generally assumed. Here, we have studied the metallization of phospholipid nanodiscs which are discoidal particles of ~10 nm diameter containing a lipid bilayer ~5 nm thick. Using negatively charged lipids, electrostatic adsorption of amine-coated Au nanoparticles was achieved and followed by electroless gold deposition. Whereas Au nanoparticle adsorption preserves the shape of the bio-template, metallization proceeds via invasion of Au into the hydrophobic core of the nanodisc. Thereby, the lipidic phase induces a lateral growth that increases the diameter but not the original thickness of the template. Infrared spectroscopy reveals lipid expansion and suggests the existence of internal gaps in the metallized nanodiscs, which is confirmed by surface-enhanced Raman scattering from the encapsulated lipids. Interference of metallic growth with non-covalent interactions can thus become itself a shape-determining factor in the metallization of particularly soft and structurally anisotropic biomaterials. KW - Lipid Nanodiscs KW - Metal nanoparticles KW - Infrared spectroscopy KW - Surface-enhanced Raman scattering PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-364303 UR - http://www.nature.com/articles/srep26718 SN - 2045-2322 VL - 6 SP - 26718-1 EP - 26718-9 PB - Nature Publishing Group CY - London, UK AN - OPUS4-36430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keller, A. A1 - Kopyra, J. A1 - Gothelf, K.V. A1 - Bald, Ilko T1 - Electron-induced damage of biotin studied in the gas phase and in the condensed phase at a single-molecule level N2 - Biotin is an essential vitamin that is, on the one hand, relevant for the metabolism, gene expression and in the cellular response to DNA damage and, on the other hand, finds numerous applications in biotechnology. The functionality of biotin is due to two particular sub-structures, the ring structure and the side chain with carboxyl group. The heterocyclic ring structure results in the capability of biotin to form strong intermolecular hydrogen and van der Waals bonds with proteins such as streptavidin, whereas the carboxyl group can be employed to covalently bind biotin to other complex molecules. Dissociative electron attachment (DEA) to biotin results in a decomposition of the ring structure and the carboxyl group, respectively, within resonant features in the energy range 0–12 eV, thereby preventing the capability of biotin for intermolecular binding and covalent coupling to other molecules. Specifically, the fragment anions (M–H)-, (M–O)-, C3N2O-, CH2O2-, OCN-, CN-, OH- and O- are observed, and exemplarily the DEA cross section of OCN- formation is determined to be 3 × 10-19 cm². To study the response of biotin to electrons within a complex condensed environment, we use the DNA origami technique and determine a dissociation yield of (1.1 ± 0.2) × 10-14 cm² at 18 eV electron energy, which represents the most relevant energy for biomolecular damage induced by secondary electrons. The present results thus have important implications for the use of biotin as a label in radiation experiments. KW - Low-energy electrons KW - DNA radiation damage KW - Biotin KW - Atomic force microscopy KW - Anions KW - Mass spectrometry PY - 2013 U6 - https://doi.org/10.1088/1367-2630/15/8/083045 SN - 1367-2630 VL - 15 SP - 083045-1 - 083045-14 PB - IOP Publishing Ltd. AN - OPUS4-29610 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kopyra, J. A1 - Keller, A. A1 - Bald, Ilko T1 - On the role of fluoro-substituted nucleosides in DNA radiosensitization for tumor radiation therapy N2 - Gemcitabine (2',2'-difluorocytidine) is a well-known radiosensitizer routinely applied in concomitant chemoradiotherapy. During irradiation of biological media with high-energy radiation secondary low-energy (<10 eV) electrons are produced that can directly induce chemical bond breakage in DNA by dissociative electron attachment (DEA). Here, we investigate and compare DEA to the three molecules 2'-deoxycytidine, 2'-deoxy-5-fluorocytidine, and gemcitabine. Fluorination at specific molecular sites, i.e., nucleobase or sugar moiety, is found to control electron attachment and subsequent dissociation pathways. The presence of two fluorine atoms at the sugar ring results in more efficient electron attachment to the sugar moiety and subsequent bond cleavage. For the formation of the dehydrogenated nucleobase anion, we obtain an enhancement factor of 2.8 upon fluorination of the sugar, whereas the enhancement factor is 5.5 when the nucleobase is fluorinated. The observed fragmentation reactions suggest enhanced DNA strand breakage induced by secondary electrons when gemcitabine is incorporated into DNA. KW - Dissociative electron attachment KW - DNA radiation damage KW - Gemcitabine KW - DNA radiosensitizer KW - Tumor radiation therapy PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-302872 SN - 2046-2069 VL - 4 IS - 13 SP - 6825 EP - 6829 PB - RSC Publishing CY - London AN - OPUS4-30287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -