TY - THES A1 - Kianinejad, Kaveh T1 - Multiscale Modelling of Creep Anisotropy in Additively Manufactured IN738LC N2 - Excellent creep resistance at elevated temperatures, i.e. T / Tm> 0.5, due to gamma-gamma’ microstructure is one of the main properties of nickel-based superalloys. Due to its great importance for industrial applications, much research has been devoted to understanding the underlying deformation mechanism in a broad spectrum of temperature and loading conditions. Additive Manufactured (AMed) nickel-based superalloys, while being governed by similar \gamma-gamma’ microstructure, exhibit AM-process specific microstructural characteristics, such as columnar grains, firm crystallographic texture (typically <001> fibre texture parallel to build direction) and compositional inhomogeneity, which in turn leads to anisotropic creep response in both stationary and tertiary phases. Despite the recent insights on the correlation between process parameters and the resulting microstructure, these materials' anisotropic creep behaviour and corresponding deformation mechanism are insufficiently understood. One reason is the lack of capable material models that link the microstructure to the mechanical behaviour. Within the present work, a multiscale approach has been developed to overcome this challenge by combining microstructure-based mesoscale and phenomenological macroscale models. The mesoscale model utilizes the Crystal Plasticity Finite Element Method (CPFEM) to include the microstructural characteristics and the relevant deformation mechanism on the polycrystalline scale. The mesoscale model was then used to perform virtual creep experiments required to calibrate the macroscale model. The developed approach has been applied to characterise the creep behaviour of AMed IN738LC. The effect of different slip systems, crystallographical texture, grain morphology, and Grain Boundary Sliding (GBS) on creep anisotropy at 850°C has been investigated. The approach's ability to capture the AM-specific characteristics and link them to the observed macroscale anisotropic response has been demonstrated, and the contribution of primary underlying deformation mechanisms to creep anisotropy has been elucidated. KW - Creep anisotropy KW - Crystal plasticity KW - Addtively manufactured Nickel-based Alloys alloy PY - 2025 SP - 1 EP - 135 PB - RWTH Aachen CY - Aachen AN - OPUS4-64598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kianinejad, Kaveh A1 - Czediwoda, Fabian A1 - Glatzel, U. A1 - Völkl, R. A1 - Stöhr, B. A1 - Ávila Calderón, Luis A1 - Schriever, Sina A1 - Saliwan Neumann, Romeo A1 - Fedelich, Bernard A1 - Darvishi Kamachali, Reza T1 - Microstructure-based modelling of the anisotropic creep behaviour in additively manufactured INCONEL 718 N2 - The existing gap in the adequate prediction of the microstructure-property relationships remains a significant barrier to the safe application of the additively manufactured materials. This challenge is fundamentally tied to the intricate microstructural defects that emerge during the processing. Systematic microstructure-based modelling can offer solutions to address this bottleneck. In this work, we utilize a crystal plasticity model, developed for gamma''-strengthened Ni-base alloys and calibrated with single crystal tensile and creep tests of Inconel 718. By systematically refining the representative volume element complexity---from equiaxed to elongated grain morphologies, and from unimodal to bimodal orientation and grain size distributions---we demonstrate how each layer of structural realism contributes to the model’s predictive capacity. Creep tests of laser-based powder bed fusion (PBF-LB/M) manufactured samples in three orientations (with the tensile axis parallel, perpendicular, and 45° tilted relative to the building direction) were performed at 650° C, accompanied by electron backscatter secondary diffraction measurements. The results of our simulations reveal that the bimodal grain morphology and crystallographical texture significantly influence the observed creep anisotropy. We show that the elongated grain structure combined with grain boundary sliding plays a major role in the creep response, specifically in tilted specimens. KW - Additive manufactured Ni-base superalloys KW - Creep Anisotropy KW - Crystal plasticity PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-646884 DO - https://doi.org/10.1016/j.msea.2025.149029 VL - 945 SP - 1 EP - 15 PB - Elsevier B.V. AN - OPUS4-64688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kianinejad, Kaveh A1 - Darvishi Kamachali, Reza A1 - Khedkar, Abhinav A1 - Manzoni, Anna Maria A1 - Agudo Jácome, Leonardo A1 - Schriever, Sina A1 - Saliwan Neumann, Romeo A1 - Megahed, Sandra A1 - Heinze, Christoph A1 - Kamrani, Sepideh A1 - Fedelich, Bernard T1 - Creep anisotropy of additively manufactured Inconel-738LC: Combined experiments and microstructure-based modeling N2 - The current lack of quantitative knowledge on processing-microstructure–property relationships is one of the major bottlenecks in today’s rapidly expanding field of additive manufacturing. This is centrally rooted in the nature of the processing, leading to complex microstructural features. Experimentally-guided modeling can offer reliable solutions for the safe application of additively manufactured materials. In this work, we combine a set of systematic experiments and modeling to address creep anisotropy and its correlation with microstructural characteristics in laser-based powder bed fusion (PBF-LB/M) additively manufactured Inconel-738LC (IN738LC). Three sample orientations (with the tensile axis parallel, perpendicular, and 45° tilted, relative to the building direction) are crept at 850 °C, accompanied by electron backscatter secondary diffraction (EBSD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations. A crystal plasticity (CP) model for Ni-base superalloys, capable of modeling different types of slip systems, is developed and combined with various polycrystalline representative volume elements (RVEs) built on the experimental measurements. Besides our experiments, we verify our modeling framework on electron beam powder bed fusion (PBF-EB/M) additively manufactured Inconel-738LC. The results of our simulations show that while the crystallographic texture alone cannot explain the observed creep anisotropy, the superlattice extrinsic stacking faults (SESF) and related microtwinning slip systems play major roles as active deformation mechanisms. We confirm this using TEM investigations, revealing evidence of SESFs in crept specimens. We also show that the elongated grain morphology can result in higher creep rates, especially in the specimens with a tilted tensile axis. KW - Additive manufactured Ni-base superalloys KW - Creep KW - Crystal plasticity KW - Superlattice extrinsic stacking faults PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601576 DO - https://doi.org/10.1016/j.msea.2024.146690 SN - 0921-5093 VL - 907 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-60157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kianinejad, Kaveh A1 - Fedelich, Bernard A1 - Darvishi Kamachali, Reza A1 - Schriever, Sina A1 - Manzoni, Anna Maria A1 - Agudo Jácome, Leonardo A1 - Megahed, Sandra A1 - Kamrani, Sepideh A1 - Saliwan Neumann, Romeo T1 - Experimentally informed multiscale creep modelling of additive manufactured Ni-based superalloys N2 - Excellent creep resistance at elevated temperatures, i.e. T / T_m> 0.5, due to γ-γ’ microstructure is one of the main properties of nickel-based superalloys. Due to its great importance for industrial applications, a remarkable amount of research has been devoted to understanding the underlying deformation mechanism in a wide spectrum of temperature and loading conditions. Additive manufactured (AM) nickel-based superalloys while being governed by similar γ-γ’ microstructure, exhibit AM-process specific microstructural characteristics, such as columnar grains, strong crystallographic texture (typically <001> fiber texture parallel to build direction) and compositional inhomogeneity, which in turn leads to anisotropic creep response in both stationary and tertiary phases. Despite the deep insights achieved recently on the correlation between process parameters and the resulting microstructure, the anisotropic creep behavior and corresponding deformation mechanism of these materials are insufficiently understood so far. One reason for this is the lack of capable material models that can link the microstructure to the mechanical behavior. To overcome this challenge, a multiscale microstructure-based approach has been applied by coupling crystal plasticity (CP) and polycrystal model which enables the inclusion of different deformation mechanisms and microstructural characteristics such as crystallographic texture and grain morphology. The method has been applied to experimental data for AM-manufactured INCONEL-738LC (IN738). The effect of different slip systems, texture, and morphology on creep anisotropy at 850°C has been investigated. Results suggest a strong correlation between superlattice extrinsic stacking fault (SESF) and microtwinning and observed creep anisotropy. T2 - EUROMAT 23 CY - Frankfurt a. M., Germany DA - 04.09.2023 KW - IN738LC KW - Creep anisotropy KW - Crystal plasticity PY - 2023 AN - OPUS4-58263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -