TY - GEN A1 - Resch-Genger, Ute A1 - Pfeifer, Dietmar A1 - Hoffmann, Katrin A1 - Flachenecker, Günter A1 - Hoffmann, Angelika A1 - Monte, C. ED - Resch-Genger, Ute ED - O.S. Wolfbeis, T1 - Linking fluorometry to radiometry with physical and chemical transfer standards: instrument characterization and traceable fluorescence measurements N2 - Problems associated with the measurement of photoluminescence are briefly reviewed, including relevant instrument parameters affecting these measurements. Procedures for the characterization of relevant instruments are discussed, focusing on spectrofluorometers, and fit-for-purpose methods including suitable standards are recommended. The aim here is to increase the awareness of the importance of reliable instrument characterization and to improve the comparability of measurements of photoluminescence. KW - Calibration KW - Emission standards KW - Fluorescence intensity standards KW - Fluorescence standards KW - Quality assurance KW - Spectral correction PY - 2008 SN - 978-3-540-75206-6 U6 - https://doi.org/10.1007/4243_2008_054 SN - 1617-1306 N1 - Serientitel: Springer Series on Fluorescence – Series title: Springer Series on Fluorescence VL - 5 IS - Part II SP - 65 EP - 99 PB - Springer AN - OPUS4-18301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Würth, Christian A1 - Behnke, Thomas A1 - Hoffmann, Angelika A1 - Pfeifer, Dietmar A1 - Engel, A. T1 - The toolbox of fluorescence standards: Flexible calibration tools for the standardization of fluorescence-based measurements N2 - To improve the reliability of fluorescence data in the life and material sciences and to enable accreditation of fluorescence techniques, standardization concepts are required that guarantee and improve the comparability of fluorescence measurements. At the core of such concepts are simple and evaluated fluorescence standards for the consideration of instrument-specific spectral and intensity distortions of measured signals and for instrument performance validation (IPV). Similarly in need are fluorescence intensity standards for the quantification from measured intensities and for signal referencing, thereby accounting for excitation light-induced intensity fluctuations. These standards should be preferably certified, especially for use in regulated areas like medical diagnostics. This encouraged us to develop liquid and solid standards for different fluorescence parameters and techniques for use under routine measurement conditions in different formates. Special emphasis was dedicated to the determination and control of the spectral responsivity of detection systems, wavelength accuracy, homogeneity of illumination, and intensity referencing for e.g. spectrofluorometers, fluorescence sensors and confocal laser scanning fluorescence microscopes. Here, we will present design concepts and examples for mono- and multifunctional fluorescence standards that provide traceability to radiometric units and present a first step towards a toolbox of standards. KW - Fluorescence KW - Fluorescence standard KW - Calibration tool KW - Spectral fluorescence standard KW - Intensity standard KW - Instrument performance validation KW - Quality assurance KW - Traceability KW - Glass KW - Liquid standard PY - 2010 U6 - https://doi.org/10.1117/12.853133 SN - 0277-786X SN - 0038-7355 SN - 0361-0748 VL - 7666 IS - 76661J SP - 1 EP - 12 PB - Soc. CY - Redondo Beach, Calif. [u.a.] AN - OPUS4-21595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Nitschke, R. T1 - Simple Tool for the Standardization of Confocal Spectral Imaging Systems KW - Standards KW - Fluorescence reference material KW - Quality assurance KW - Fluorescence microscopy PY - 2005 SN - 1439-4243 SN - 1863-7809 VL - 7 IS - 3 SP - 18 EP - 19 PB - GIT-Verl. CY - Darmstadt AN - OPUS4-11070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Monte, Christian A1 - Pfeifer, Dietmar T1 - Standards in Fluorescence Spectroscopy KW - Standard KW - Fluorescence KW - Reference material KW - Quality assurance KW - Spectrofluorometer PY - 2005 SN - 1434-2634 VL - 9 IS - 6 SP - 29 EP - 31 PB - GIT Verl. CY - Darmstadt AN - OPUS4-11556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xu, R. A1 - Teich, W. A1 - Frenzel, Florian A1 - Hoffmann, Katrin A1 - Radke, J. A1 - Rösler, J. A1 - Faust, K. A1 - Blank, A. A1 - Brandenburg, S. A1 - Misch, M. A1 - Vajkoczy, P. A1 - Onken, J. S. A1 - Resch-Genger, Ute T1 - Optical characterization of sodium fluorescein in vitro and ex vivo N2 - Objective: The utilization of fluorescein-guided biopsies and resection has been recently discussed as a suitable strategy to improve and expedite operative techniques for the resection of central nervous system (CNS) tumors. However, little is known about the optical properties of sodium fluorescein (NaFl) in human tumor tissue and their potential impact on ex vivo analyses involving fluorescence-based methods. Methods: Tumor tissue was obtained from a study cohort of an observational study on the utilization of fluorescein-guided biopsy and resection (n=5). The optical properties of fluorescein-stained tissue were compared to the optical features of the dye in vitro and in control samples consisting of tumor tissue of high-grade glioma patients (n=3) without intravenous (i.v.) application of NaFl. The dye-exposed tumor tissues were used for optical measurements to confirm the detectability of NaFl emission ex vivo. The tissue samples were fixed in 4%PFA, immersed in 30% sucrose, embedded in Tissue-Tek OCT compound, and cut to 10 mm cryosections. Spatially resolved emission spectra from tumor samples were recorded on representative slides with a Confocal Laser Scanning Microscope FV1000 (Olympus GmbH, Hamburg, Germany) upon excitation with lexc = 488 nm. Results: Optical measurements of fluorescein in 0.9% sodium chloride (NaCl) under in vitro conditions showed an absorption maximum of lmax abs = 479 nm as detected with spectrophotometer Specord 200 and an emission peak at lmax em = 538 nm recorded with the emCCD detection system of a custom-made microscope-based single particle setup using a 500 nm long-pass filter. Further measurements revealed pH- and concentration-dependent emission spectra of NaFl. Under ex vivo conditions, confocal laser scanning microscopy of fluorescein tumor samples revealed a slight bathochromic shift and a broadening of the emission band. Conclusion: Tumor uptake of NaFl leads to changes in the optical properties – a bathochromic shift and broadening of the emission band – possibly caused by the dye’s high pH sensitivity and concentration-dependent reabsorption acting as an innerfilter of the dye’s emission, particularly in the short wavelength region of the Emission spectrum where absorption and fluorescence overlap. Understanding the ex vivo optical properties of fluorescein is crucial for testing and validating its further applicability as an optical probe for intravital microscopy, immunofluorescence localization studies, and flow cytometry analysis. KW - Fluorescence KW - Optical probe KW - Sensor KW - Fluorescein KW - PH KW - Imaging KW - Tissue KW - Cancer KW - Medical diagnostics KW - Tumor KW - In vivo KW - Ex vivo KW - Quantum yield KW - Dye KW - Quality assurance KW - Microscopy PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-527843 SN - 2234-943X VL - 11 SP - 1 EP - 8 PB - Frontiers Media CY - Lausanne AN - OPUS4-52784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Nitschke, R. ED - O.S. Wolfbeis, ED - Resch-Genger, Ute T1 - Comparability of fluorescence microscopy data and need for instrument characterization of spectral scanning microscopes N2 - The aim of this article is to illustrate the need for an improved quality assurance in fluorescence microscopy. From the instrument-side, this can be achieved by a better understanding, consideration, and regular control of the instrument-specific parameters and quantities affecting measured fluorescence signals. Particularly, the need for requirements on physical- and chemical-type instrument standards for the characterization and performance validation of spectral fluorescence microscopes (SFMs) is discussed and suitable systems are presented. Special emphasis is given to spectral fluorescence standards and to day-to-day intensity standards for SFMs. Fluorescence standards and well-characterized fluorescence microscopes are the first and essential steps towards the comparability and the understanding of the variability in fluorescence microscopy data in medical and life sciences. In addition, standards enable the distinction between instrument-specific variations and fluorescent label- or probe-related uncertainties as well as generally sample-related effects. KW - Fluorescence spectroscopy KW - Fluorescence microscopy KW - Quality assurance KW - Calibration KW - Standard KW - Comparability KW - Quantification PY - 2008 SN - 978-3-540-70570-3 U6 - https://doi.org/10.1007/4243_2008_028 SN - 1617-1306 N1 - Serientitel: Springer Series on Fluorescence – Series title: Springer Series on Fluorescence VL - 6 IS - Part A SP - 89 EP - 116 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-18995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Pfeifer, Dietmar ED - Chris D. Geddes, T1 - Simple calibration and validation standards for fluorometry KW - Fluorescence KW - Standard KW - Spectral correction KW - Emission KW - Glass KW - Quantum yield KW - Fluorescence intensity KW - Quality assurance PY - 2009 SN - 978-0-387-88721-0 U6 - https://doi.org/10.1007/978-0-387-88722-7_1 SN - 1573-8086 N1 - Serientitel: Reviews in Fluorescence – Series title: Reviews in Fluorescence VL - 4 SP - 1 EP - 31 PB - Springer Science + Business Media AN - OPUS4-19830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute T1 - Fluorescence calibration standards made from broadband emitters encapsulated in polymer beads for fluorescence microscopy and flow cytometry N2 - We present here the design and characterization of a set of spectral calibration beads. These calibration beads are intended for the determination and regular control of the spectral characteristics of fluorescence microscopes and other fluorescence measuring devices for the readout of bead-based assays. This set consists of micrometer-sized polymer beads loaded with dyes from the liquid Calibration Kit Spectral Fluorescence Standards developed and certified by BAM for the wavelength-dependent Determination of the spectral responsivity of fluorescencemeasuring devices like spectrofluorometers. To cover the wavelength Region from 400 to 800 nm, two new near-infrared emissive dyes were included, which were spectroscopically characterized in solution and encapsulated in the beads. The resulting set of beads presents the first step towards a new platform of spectral calibration beads for the determination of the spectral characteristics of fluorescence instruments like fluorescence microscopes, FCM setups, and microtiter plate readers, thereby meeting the increasing demand for reliable and comparable fluorescence data especially in strongly regulated areas, e.g., medical diagnostics. This will eventually provide the basis for standardized calibration procedures for imaging systems as an alternative to microchannel slides containing dye solutions previously reported by us. KW - Fluorescence standard KW - Fluorescence KW - Dye KW - Microscopy KW - Bead KW - Particle KW - NIR KW - calibration KW - Quality assurance KW - Traceability PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-508117 SN - 1618-2642 VL - 412 IS - 24 SP - 6499 EP - 6507 PB - Springer AN - OPUS4-50811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -