TY - JOUR A1 - Hennig, Andreas A1 - Borcherding, H. A1 - Jäger, Christian A1 - Hatami, Soheil A1 - Würth, Christian A1 - Hoffmann, Angelika A1 - Hoffmann, Katrin A1 - Thiele, T. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Scope and limitations of surface functional quantification methods: exploratory study with poly(acrylic acid)-grafted micro- and nanoparticles N2 - The amount of grafted poly(acrylic acid) on poly(methyl methacrylate) micro- and nanoparticles was quantified by conductometry, 13C solid-state NMR, fluorophore labeling, a supramolecular assay based on high-affinity binding of cucurbit[7]uril, and two colorimetric assays based on toluidine blue and nickel complexation by pyrocatechol violet. The methods were thoroughly validated and compared with respect to reproducibility, sensitivity, and ease of use. The results demonstrate that only a small but constant fraction of the surface functional groups is accessible to covalent surface derivatization independently of the total number of surface functional groups, and different contributing factors are discussed that determine the number of probe molecules which can be bound to the polymer surface. The fluorophore labeling approach was modified to exclude artifacts due to fluorescence quenching, but absolute quantum yield measurements still indicate a major uncertainty in routine fluorescence-based surface group quantifications, which is directly relevant for biochemical assays and medical diagnostics. Comparison with results from protein labeling with streptavidin suggests a porous network of poly(acrylic acid) chains on the particle surface, which allows diffusion of small molecules (cutoff between 1.6 and 6.5 nm) into the network. KW - Polymers KW - Surface groups KW - Quantification KW - Fluorescence PY - 2012 U6 - https://doi.org/10.1021/ja302649g SN - 0002-7863 SN - 1520-5126 VL - 134 IS - 19 SP - 8268 EP - 8276 PB - American Chemical Society CY - Washington, DC AN - OPUS4-26002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Resch-Genger, Ute A1 - Pfeifer, Dietmar A1 - Hoffmann, Katrin A1 - Flachenecker, Günter A1 - Hoffmann, Angelika A1 - Monte, C. ED - Resch-Genger, Ute ED - O.S. Wolfbeis, T1 - Linking fluorometry to radiometry with physical and chemical transfer standards: instrument characterization and traceable fluorescence measurements N2 - Problems associated with the measurement of photoluminescence are briefly reviewed, including relevant instrument parameters affecting these measurements. Procedures for the characterization of relevant instruments are discussed, focusing on spectrofluorometers, and fit-for-purpose methods including suitable standards are recommended. The aim here is to increase the awareness of the importance of reliable instrument characterization and to improve the comparability of measurements of photoluminescence. KW - Calibration KW - Emission standards KW - Fluorescence intensity standards KW - Fluorescence standards KW - Quality assurance KW - Spectral correction PY - 2008 SN - 978-3-540-75206-6 U6 - https://doi.org/10.1007/4243_2008_054 SN - 1617-1306 N1 - Serientitel: Springer Series on Fluorescence – Series title: Springer Series on Fluorescence VL - 5 IS - Part II SP - 65 EP - 99 PB - Springer AN - OPUS4-18301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfeifer, Dietmar A1 - Hoffmann, Katrin A1 - Hoffmann, Angelika A1 - Monte, Christian A1 - Resch-Genger, Ute T1 - The Calibration Kit Spectral Fluorescence Standards - A Simple and Certified Tool for the Standardization of the Spectral Characteristics of Fluorescence Instruments N2 - With the Calibration Kit Spectral Fluorescence Standards BAM-F001–BAM-F005, we developed a simple tool for the characterization of the relative spectral responsivity and the long-term stability of the emission channel of fluorescence instruments under routine measurement conditions thereby providing the basis for an improved comparability of fluorescence measurements and eventually standardization. This first set of traceable fluorescence standards, which links fluorescence measurements to the spectral radiance scale in the spectral range of 300–770 nm and has been optimized for spectrofluorometers, can be employed for different measurement geometries and can be adapted to different fluorescence techniques with proper consideration of the underlying measurement principles. KW - Fluorescence KW - Standard KW - Spectral correction KW - Emission KW - Calibration tool PY - 2006 U6 - https://doi.org/10.1007/s10895-006-0086-8 SN - 1053-0509 SN - 1573-4994 VL - 16 IS - 4 SP - 581 EP - 587 PB - Plenum Publ. Corp. CY - New York, NY AN - OPUS4-14206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Hoffmann, Angelika T1 - Standardization of Fluorescence Measurements - Criteria for the Choice of Suitable Standards and Approaches to Fit-for-Purpose Calibration Tools N2 - This report summarizes problems associated with the comparability of measurements of photoluminescence and procedures for the characterization of relevant instruments, focusing on physical and chemical fluorescence standards. To provide recommendations on selecting and using such standards, we derive general and scope-specific requirements and quality criteria for suitable devices and materials and briefly address metrological requirements linked to the realization of comparable measurements. Special emphasis is dedicated to liquid and solid chromophore-based fluorescence standards developed or currently tested by us. KW - Fluorescence standard KW - Fluorescence spectroscopy KW - Spectral correction KW - day-to-day intensity standard KW - Calibration KW - Metrology KW - Fluorescence microscopy PY - 2008 U6 - https://doi.org/10.1196/annals.1430.018 SN - 0077-8923 SN - 1749-6632 SN - 0094-8500 VL - 1130 SP - 35 EP - 43 PB - New York Academy of Sciences CY - New York, NY AN - OPUS4-17712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Würth, Christian A1 - Behnke, Thomas A1 - Hoffmann, Angelika A1 - Pfeifer, Dietmar A1 - Engel, A. T1 - The toolbox of fluorescence standards: Flexible calibration tools for the standardization of fluorescence-based measurements N2 - To improve the reliability of fluorescence data in the life and material sciences and to enable accreditation of fluorescence techniques, standardization concepts are required that guarantee and improve the comparability of fluorescence measurements. At the core of such concepts are simple and evaluated fluorescence standards for the consideration of instrument-specific spectral and intensity distortions of measured signals and for instrument performance validation (IPV). Similarly in need are fluorescence intensity standards for the quantification from measured intensities and for signal referencing, thereby accounting for excitation light-induced intensity fluctuations. These standards should be preferably certified, especially for use in regulated areas like medical diagnostics. This encouraged us to develop liquid and solid standards for different fluorescence parameters and techniques for use under routine measurement conditions in different formates. Special emphasis was dedicated to the determination and control of the spectral responsivity of detection systems, wavelength accuracy, homogeneity of illumination, and intensity referencing for e.g. spectrofluorometers, fluorescence sensors and confocal laser scanning fluorescence microscopes. Here, we will present design concepts and examples for mono- and multifunctional fluorescence standards that provide traceability to radiometric units and present a first step towards a toolbox of standards. KW - Fluorescence KW - Fluorescence standard KW - Calibration tool KW - Spectral fluorescence standard KW - Intensity standard KW - Instrument performance validation KW - Quality assurance KW - Traceability KW - Glass KW - Liquid standard PY - 2010 U6 - https://doi.org/10.1117/12.853133 SN - 0277-786X SN - 0038-7355 SN - 0361-0748 VL - 7666 IS - 76661J SP - 1 EP - 12 PB - Soc. CY - Redondo Beach, Calif. [u.a.] AN - OPUS4-21595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Dietzel, B. A1 - Schulz, B. A1 - Reck, Günter A1 - Hoffmann, Angelika A1 - Orgzall, I. A1 - Resch-Genger, Ute A1 - Emmerling, Franziska T1 - Combined structural and fluorescence studies of methyl-substituted 2,5-diphenyl-1,3,4-oxadiazoles - relation between electronic properties and packing motifs N2 - Prerequisite for the rational design of functional organic materials with tailor-made electronic properties is the knowledge of the structure–property relationship for the specific class of molecules under consideration. This encouraged us to systematically study the influence of the molecular structure and substitution pattern of aromatically substituted 1,3,4-oxadiazoles on the electronic properties and packing motifs of these molecules and on the interplay of these factors. For this purpose, seven diphenyl-oxadiazoles equipped with methyl substituents in the ortho- and meta-position(s) were synthesized and characterized. Absorption and fluorescence spectra in solution served here as tools to monitor substitution-induced changes in the electronic properties of the individual molecules whereas X-ray and optical measurements in the solid state provided information on the interplay of electronic and packing effects. In solution, the spectral position of the absorption maximum, the size of Stokes shift, and the fluorescence quantum yield are considerably affected by ortho-substitution in three or four ortho-positions. This results in blue shifted absorption bands, increased Stokes shifts, and reduced fluorescence quantum yields whereas the spectral position and vibrational structure of the emission bands remain more or less unaffected. In the crystalline state, however, the spectral position and shape of the emission bands display a strong dependence on the molecular structure and/or packing motifs that seem to control the amount of dye–dye-interactions. These observations reveal the limited value of commonly reported absorption and fluorescence measurements in solution for a straightforward comparison of spectroscopic results with single X-ray crystallography. This underlines the importance of solid state spectroscopic studies for a better understanding of the interplay of electronic effects and molecular order. KW - Diphenyl-oxadiazoles KW - X-ray structure KW - Packing motif KW - Optical properties KW - Fluorescence quantum yield PY - 2011 U6 - https://doi.org/10.1016/j.molstruc.2010.11.071 SN - 0022-2860 SN - 1872-8014 SN - 0377-046X VL - 988 IS - 1-3 SP - 35 EP - 46 PB - Elsevier CY - Amsterdam AN - OPUS4-23253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Behnke, Thomas A1 - Brehm, Robert A1 - Grabolle, Markus A1 - Hennig, Andreas A1 - Hoffmann, Angelika A1 - Hoffmann, Katrin A1 - Linck, Lena A1 - Lochmann, Cornelia A1 - Pauli, Jutta A1 - Spieles, Monika A1 - Würth, Christian T1 - Funktionelle Chromophor-Systeme, innovative Validierungskonzepte und rückführbare Standards für die fluoreszenzbasierte multiparametrische Bioanalytik N2 - Unter dem Motto „Innovation und Qualitätssicherung in der (Bio)Analytik“ werden in der Arbeitsgruppe Fluoreszenzspektroskopie der BAM, Bundesanstalt für Materialforschung und -prüfung, funktionelle Chromophor-Systeme, einfache Signalverstärkungs- und Multiplexingstrategien sowie innovative Validierungs- und rückführbare Standardisierungskonzepte für verschiedene fluorometrische Messgrößen und Methoden entwickelt. Im Mittelpunkt stehen dabei molekulare Fluorophore, Nanokristalle mit größenabhängigen optischen Eigenschaften (sogenannte Quantenpunkte, QDs) und fluoreszierende Partikel variabler Größe sowie Sonden und Sensormoleküle für neutrale und ionische Analyte und für die Charakterisierung von funktionellen Gruppen. Dabei erfolgen auch methodische Entwicklungen für die Fluoreszenzspektroskopie, die Fluoreszenzmikroskopie, die Milcrofluorometrie, die Sensorik und die Mikroarraytechnologie. Ziele sind u. a. das Design und die Untersuchung von multiplexfähigen selektiven und sensitiven Sonden für die Biomarkeranalytik, die Entwicklung von Methoden zur Charakterisierung der signalrelevanten Eigenschaften dieser Chromophor-Systeme und zur Charakterisierung von funktionellen Gruppen an Oberflächen und ihre Validierung sowie die Entwicklung und Bereitstellung von formatadaptierbaren, flexibel ersetzbaren Standards für die fluoreszenzbasierte Multiparameteranalytik. T2 - 5. Senftenberger Innovationsforum Multiparameteranalytik CY - Senftenberg, Deutschland DA - 10.03.2011 KW - Multiparametric KW - Multiplexing KW - Fluorescence KW - Nanoparticles KW - NIR dyes KW - Surface analysis KW - Quantum yield KW - Quantum dot KW - Lifetime PY - 2011 SP - 86 EP - 108 CY - Senftenberg AN - OPUS4-23635 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lindner, G.-G. A1 - Hoffmann, Katrin A1 - Witke, Klaus A1 - Reinen, D. A1 - Heinemann, Chr. A1 - Koch, W. T1 - Spectroscopic Properties of Se2 2- and Se2- in Cancrinite KW - Selen KW - Cancrinit PY - 1996 SN - 0022-4596 SN - 1095-726X VL - 126 IS - 1 SP - 50 EP - 54 PB - Elsevier CY - San Diego, Calif. AN - OPUS4-690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weh, K. A1 - Noack, M. A1 - Hoffmann, Katrin A1 - Schröder, K.-P. A1 - Caro, J. T1 - Change of gas permeation by photoinduced switching of zeolite-azobenzene membranes of type MFI and FAU N2 - FAU membranes of type Na–X and MFI membranes of type silicalite-1 which contain adsorbed azobenzene (AZB), have photoswitchable permeation properties due to the trans–cis photoisomerization of AZB. The change of gas permeation through these host–guest composite membranes depends on the irradiation wavelength, the quality of the membranes and the amount of adsorbed AZB. The permeances of the gases in the trans-form of the zeolite-encapsulated AZB were higher than those in the cis-form. The separation factors of equimolar mixtures of N2/CO2 and CH4/CO2 fed through the FAU–AZB membrane were higher at trans-switching than at cis-switching. The changes of the permeances of single gases and of the separation factors of equimolar gas mixtures by photoinduced trans–cis switching were found to be reversible over numerous switching cycles. The experimental results are in agreement with predictions made by Monte Carlo simulations for passing of permeant gases through these host–guest systems with the zeolite-hosted AZB in the trans- and in the cis-configuration. PY - 2002 U6 - https://doi.org/10.1016/S1387-1811(02)00331-1 SN - 1387-1811 SN - 1873-3093 VL - 54 IS - 1-2 SP - 15 EP - 26 PB - Elsevier CY - Amsterdam AN - OPUS4-1752 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Marlow, Frank T1 - Reversible Photosensitive Refractive Index Changes of Chromophor/Zeolite Nanocomposites T2 - Abschlußkolloquium "Nanostrukturierte Wirt/Gast-Systeme" CY - Berlin, Germany DA - 2002-10-21 PY - 2002 AN - OPUS4-1753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Marlow, Frank A1 - Dong, W. A1 - Hoffmann, Katrin A1 - Loerke, J. ED - Schüth, F. T1 - Optically and electronically functional materials PY - 2002 SN - 3-527-30246-8 SP - 3029 EP - 3063 PB - Wiley-VCH CY - Weinheim AN - OPUS4-1751 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Rurack, Knut A1 - Resch-Genger, Ute A1 - Marlow, Frank T1 - Absorption and Fluorescence Properties of Dyes Incorporated in Pores of AlPO4-5 T2 - 14. Deutsche Zeolith-Tagung CY - Frankfurt am Main, Germany DA - 2002-03-06 PY - 2002 AN - OPUS4-3261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rurack, Knut A1 - Hoffmann, Katrin A1 - Al-Soufi, W. A1 - Resch-Genger, Ute T1 - 2,2'-Bipyridyl-3,3'-diol Incorporated into AlPO4-5 Crystals and Its Spectroscopic Properties as Related to Aqueous Liquid Media N2 - A novel fluorescent host-guest material, molecular sieves of AlPO4-5-type doped with 2,2'-bipyridyl-3,3'-diol, was prepared and spectroscopically characterized. The composite crystals show a pronounced optical anisotropy, indicating a high degree of alignment of the guest molecules within the zeolitic pore system. A mean tilting angle of 22 was found for the orientation of the individual dye molecules in the straight channels. The corrected fluorescence emission spectra were determined, and time-resolved fluorescence studies revealed that the dye molecules are preferentially found in three different types of microenvironment. By invoking pH-dependent studies of the dye in aqueous solution, we could trace these spectroscopic features back to two main influences, coadsorbed water within AlPO4-5 pores and guest-host interactions with a few relatively weak Brnsted acid (defect) sites of the inorganic host network. PY - 2002 U6 - https://doi.org/10.1021/jp0259622 SN - 1520-6106 SN - 1520-5207 SN - 1089-5647 VL - 106 IS - 38 SP - 9744 EP - 9752 PB - Soc. CY - Washington, DC AN - OPUS4-1546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hoffmann, Katrin A1 - Marlow, F. ED - Auerbach, S. M. ED - Carrado, K. A. ED - Dutta, P. K. T1 - Molecular sieve-based materials for photonic applications PY - 2003 SN - 0-8247-4020-3 U6 - https://doi.org/10.1201/9780203911167.ch18 SP - 921 EP - 949 PB - Dekker CY - New York AN - OPUS4-2713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Marlow, F. ED - Laeri, F. T1 - Photosensitive Optical Properties of Zeolitic Nanocomposites PY - 2003 SN - 3-527-30501-7 SP - 501 EP - 520 PB - Wiley-VCH CY - Weinheim AN - OPUS4-2714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Mix, Renate A1 - Friedrich, Jörg F. A1 - Nitschke, R. T1 - Characterization of Surface Functionalities of Plasma-modified Polymer Films by Fluorescence Spectroscopy and Microscopy T2 - ANAKON 2005 CY - Regensburg, Germany DA - 2005-03-15 PY - 2005 AN - OPUS4-7390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Mix, Renate A1 - Friedrich, Jörg F. A1 - Nitschke, R. T1 - Fluorescence Spectroscopic and Microscopic Studies on Plasmachemically Modified Polymer Films with Fluorophore-labeled Surface Functionalities T2 - MAF 9, 9th International Conference on Methods and Applications of Fluorescence CY - Lisbon, Portugal DA - 2005-09-04 PY - 2005 AN - OPUS4-7391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Nitschke, R. T1 - Simple Tool for the Standardization of Confocal Spectral Imaging Systems KW - Standards KW - Fluorescence reference material KW - Quality assurance KW - Fluorescence microscopy PY - 2005 SN - 1439-4243 SN - 1863-7809 VL - 7 IS - 3 SP - 18 EP - 19 PB - GIT-Verl. CY - Darmstadt AN - OPUS4-11070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Nitschke, R. T1 - Fluorescence standards for the characterization of the performance of spectral scanning fluorescence microscopes T2 - Focus on Microscopy 2006 CY - Perth, Australia DA - 2006-04-09 PY - 2006 AN - OPUS4-12067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mix, Renate A1 - Hoffmann, Katrin A1 - Decker, Renate A1 - Friedrich, Jörg Florian A1 - Resch-Genger, Ute ED - Blasek, G. T1 - Möglichkeiten der kovalenten Anbindung von Funktionsmolekülen an Polymeroberflächen T2 - 13. Neues Dresdner Vakuumtechnisches Kolloquium "Beschichtung und Modifizierung von Kunststoffoberflächen" CY - Dresden, Deutschland DA - 2005-10-13 PY - 2005 SP - 35 EP - 41 PB - VDI-Verl. CY - Dresden AN - OPUS4-11946 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Nietfeld, W. A1 - Engel, A. A1 - Neukammer, J. A1 - Nitschke, R. A1 - Ebert, B. A1 - Macdonald, R. T1 - How to Improve Quality Assurance in Fluorometry: Fluorescence-Inherent Sources of Error and Suited Fluorescence Standards N2 - The scope of this paper is to illustrate the need for an improved quality assurance in fluorometry. For this purpose, instrumental sources of error and their influences on the reliability and comparability of fluorescence data are highlighted for frequently used photoluminescence techniques ranging from conventional macro- and microfluorometry over fluorescence microscopy and flow cytometry to microarray technology as well as in vivo fluorescence imaging. Particularly, the need for and requirements on fluorescence standards for the characterization and performance validation of fluorescence instruments, to enhance the comparability of fluorescence data, and to enable quantitative fluorescence analysis are discussed. Special emphasis is dedicated to spectral fluorescence standards and fluorescence intensity standards. KW - Fluorescence KW - Standard KW - Calibration KW - Microarray KW - In vivo imaging KW - Flow cytometry PY - 2005 U6 - https://doi.org/10.1007/s10895-005-2630-3 SN - 1053-0509 SN - 1573-4994 VL - 15 IS - 3 SP - 337 EP - 362 PB - Plenum Publ. Corp. CY - New York, NY AN - OPUS4-10823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg Florian A1 - Kühn, Gerhard A1 - Mix, Renate A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute T1 - Tailoring of polymer surfaces with monotype functional groups of variable density using chemical and plasma chemical processes N2 - Polymer surfaces were modified in low-pressure glow discharge plasmas for introduction of monotype functional groups of different type and density. For this purpose three ways are selected, (i) oxygen plasma treatment followed by wet-chemical reduction of O functional groups to OH groups, (ii) plasma bromination for introducing C - Br groups and (iii) coating by deposition of thin plasma (co-) polymerized layers of functional groups-bearing monomers with OH, NH2, COOH, epoxy etc. functionalities. Subsequently, these groups were used as anchoring points for chemical grafting of spacer molecules, oligomers, prepolymers, fluorescent labels, ionic and nucleic acid residues, employing different chemical routes. The yield in monosort functional groups at polymer surfaces ranged from 10–14 (process i), 20–40 (process ii) and 18–31 groups per 100 C atoms (process iii) as measured by XPS after derivatization. The consumption of functional groups amounted to 40–90% of all functionalities present at the surface and depended on the dimensions of grafted molecules. For infinitely variably tuning the number of functional groups process iii was performed as copolymerization of a functional group-carrying comonomer with a non-functionalized (“chain-extending”) comonomer. KW - Introduction of functional groups KW - Plasma modification KW - Reactions at Polymer surfaces PY - 2006 SN - 0340-255x SN - 1437-8027 VL - 132 SP - 62 EP - 71 PB - Springer CY - Berlin AN - OPUS4-12515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Mix, Renate A1 - Friedrich, Jörg Florian T1 - Fluorescence Spectroscopic Studies on Plasma-Chemically Modified Polymer Surfaces with Fluorophore-Labeled Functionalities N2 - Molecular engineering of polymer surfaces that includes the attachment of functional molecules to existing or previously generated reactive chemical groups like e.g., - OH, - NH2, or - CHO requires simple strategies and tools for the controlled generation of surface functionalities and their derivatization as well as for their identification and eventually quantification. Here, we systematically investigate the plasma-chemical surface modification of polypropylene films in combination with dansyl labeling chemistry and conventional, yet costly, XPS and highly sensitive fluorescence spectroscopy for the detection of surface groups. Based on these results, the potential of and requirements on the fluorometric characterization and quantification of surfaces functionalities are discussed. KW - Fluorescence spectroscopy KW - Surface functionalization KW - Covalent labeling of polymer surfaces KW - Plasma modification KW - Fluorescent probe PY - 2006 U6 - https://doi.org/10.1007/s10895-006-0076-x SN - 1053-0509 SN - 1573-4994 VL - 16 IS - 3 SP - 441 EP - 448 PB - Plenum Publ. Corp. CY - New York, NY AN - OPUS4-12560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Descalzo López, Ana Belén A1 - Rurack, Knut A1 - Weißhoff, Hardy A1 - Martínez-Mánez, Ramon A1 - Marcos, M. Dolores A1 - Amorós, P. A1 - Hoffmann, Katrin A1 - Soto, J. T1 - Rational Design of a Chromo- and Fluorogenic Hybrid Chemosensor Material for the Detection of Long-Chain Carboxylates N2 - A strategy for the rational design of a new optical sensor material for the selective recognition of long-chain carboxylates in water is presented. The approach relies on the combination of structure-property relationships to single out the optimal molecular sensor unit and the tuning of the sensing characteristics of an inorganic support material. A spacer-substituted 7-urea-phenoxazin-3-one was employed as the signaling moiety and a mesoporous trimethylsilylated UVM-7 (MCM-41 type) material served as the solid support. The sensor material shows the advantageous features of both modules that is absorption and emission in the visible spectral range, a fluorescence red-shift and enhancement upon analyte coordination, and the amplification of noncovalent (binding) and hydrogen-bonding (recognition) interactions in the detection event. Besides these basic results that are related to the design and performance of the sensor material, the paper discusses general aspects of amido-substituted phenoxazinone photophysics and addresses some general features of molecular anion recognition chemistry in aqueous vs nonaqueous media, utilizing steady-state and time-resolved optical as well as NMR spectroscopies. Detailed studies on potentially competing biochemical species and a first access to the schematic model of the response of the sensor material as obtained by a combination of fluorescence lifetime distribution analysis and Langmuir-type fitting of the gross binding constants complement the key issues of the paper. KW - Chemosensor KW - Carboxylate KW - Rationales Design KW - Hybridmaterialien KW - Fluoreszenz PY - 2005 U6 - https://doi.org/10.1021/ja045683n SN - 0002-7863 SN - 1520-5126 VL - 127 SP - 184 EP - 200 PB - American Chemical Society CY - Washington, DC AN - OPUS4-5985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Behnke, Thomas A1 - Drescher, D. A1 - Kneipp, J. T1 - Nanoparticles for FLIM-based Multiplexed Analysis and Imaging T2 - Focus on Microscopy (FOM 2013) CY - Maastricht, Netherlands DA - 2013-03-24 PY - 2013 AN - OPUS4-28470 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Hoffmann, Angelika A1 - Spieles, Monika A1 - Resch-Genger, Ute T1 - Reference Standard for the performance validation of fluroescence measuring systems T2 - Life Science Day 2011 CY - Berlin, Germany DA - 2011-08-26 PY - 2011 AN - OPUS4-24520 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Tannert, S. A1 - Kapusta, P. A1 - Glatz, A. A1 - Goschew, A. A1 - Ortmann, U. A1 - Erdmann, R. T1 - On the Spectral Sensitivity Calibration of Fluorescence Spectrometers: Extensions to the NIR, Polarization and Grating Effects T2 - 12th Conference on Methods and Applications of Fluorescence: Spectroscopy, Imaging and Probes (MAF-12) CY - Strasbourg, France DA - 2011-09-11 PY - 2011 AN - OPUS4-24521 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Engel, A. A1 - Bäumle, M. A1 - Resch-Genger, Ute T1 - Characterization of highly fluorescence candidate glass references standards T2 - 12th Conference on Methods and Applicaions of Fluorescence: Spectroscopy, Imaging and Probes (MAF-12) CY - Strasbourg, France DA - 2011-09-11 PY - 2011 AN - OPUS4-24522 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Behnke, Thomas A1 - Laux, Eva-Maria A1 - Hoffmann, Katrin A1 - Peters, S. A1 - Haueisen, J. A1 - Klemm, M. A1 - Resch-Genger, Ute T1 - Simple approaches to fluorescence lifetime standards using dye-quencher pairs N2 - Photoluminescence techniques are amongst the most widely used tools in the material and life sciences, with new and exciting applications continuously emerging. Advantages include their comparative ease of use, unique sensitivity, non-invasive character, and potential for multiplexing, remote sensing, and miniaturization. Increasing applications of fluorescence techniques in the life sciences and emerging medical applications of fluorescence microscopic techniques including 1P and 2P fluorescence microscopy combined with fluorescence lifetime imaging (FLIM) in e.g. in vivo eye diagnostics boosted the demand for robust, easy-to-use, and reliable fluorescence standards to ensure the reliability and comparability of fluorescence data. This includes fluorescence standards for the consideration of instrument-specific spectral and intensity distortions of measured signals and instrument performance validation, fluorescence intensity standards for the quantification of measured intensities and for signal referencing, and lately, also fluorescence lifetime standards. T2 - BMT 2012 - 46. DGBMT Jahrestagung CY - Jena, Germany DA - 16.09.2012 PY - 2012 U6 - https://doi.org/10.1515/bmt-2012-4499 SN - 0013-5585 SN - 1862-278X VL - 57 IS - Suppl. 1 SP - 613 PB - De Gruyter CY - Berlin AN - OPUS4-27682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Koberling, F. A1 - Rüttinger, S. A1 - Tannert, S. A1 - Erdmann, R. T1 - Fast and Reliable Luminescence Quantum Yield Determination for efficient fluorescent Probes development T2 - SPIE BIOS 2013 - Part of Photonics West CY - San Francisco, CA, USA DA - 2013-02-02 PY - 2013 AN - OPUS4-27804 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Behnke, Thomas A1 - Würth, Christian T1 - Rationally Designed NIR-Flourescent Nanoparticles for Bioanalytical Applications T2 - EUCheMS 2012 CY - Prague, Czech Republic DA - 2012-08-26 PY - 2012 AN - OPUS4-27807 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Monte, Christian A1 - Pfeifer, Dietmar T1 - Standards in Fluorescence Spectroscopy KW - Standard KW - Fluorescence KW - Reference material KW - Quality assurance KW - Spectrofluorometer PY - 2005 SN - 1434-2634 VL - 9 IS - 6 SP - 29 EP - 31 PB - GIT Verl. CY - Darmstadt AN - OPUS4-11556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Engel, A. A1 - Ottermann, C. A1 - Klahn, J. A1 - Enseling, D. A1 - Korb, T. A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Schweizer, S. A1 - Selling, J. A1 - Kynast, U. A1 - Koberling, F. A1 - Rupertus, V. T1 - Fluorescence reference materials used for optical and biophotonic applications N2 - Fluorescence techniques are known for their high sensitivity and are widely used as analytical tools and detection methods for product and process control, material sciences, environmental and bio-technical analysis, molecular genetics, cell biology, medical diagnostics, and drug screening. According to DIN/ISO 17025 certified standards are used for fluorescence diagnostics having the drawback of giving relative values for fluorescence intensities only. Therefore reference materials for a quantitative characterization have to be related directly to the materials under investigation. In order to evaluate these figures it is necessary to calculate absolute numbers like absorption/excitation cross sections and quantum yield. This can be done for different types of dopands in different materials like glass, glass ceramics, crystals or nano crystalline material embedded in polymer matrices. Based on the optical spectroscopy data we will discuss options for characteristic doped glasses and glass ceramics with respect to scattering and absorption regime. It has shown recently for YAG:Ce glass ceramics that for a proper determination of the quantum efficiency in these highly scattering media a reference material with similar scattering and fluorescent properties is required. This may be performed using the emission decay measurement diagnostics, where the decay time is below 100 ns. In this paper we present first results of these aspects using well performing LUMOGEN RED organic pigments for a comparison of mainly transparent glass with glass ceramics doped with various amounts of dopands e.g. ions of raw earth elements and transition metals. The LUMOGEN red is embedded in silica and polyurethane matrices. Characterisations on wavelength accuracy and lifetime for different environmental conditions (temperature, UV irradiation) have been performed. Moreover intensity patterns and results for homogeneity, isotropy, photo and thermal stability will be discussed. In a next step we will show the transfer of the characterisation methods to inorganic fluophores (YAG:Ce) in silicon. Fluorescence (steady state, decay time) and absorption (remission, absorption) spectroscopy working in different temperature regimes (10 - 350 K) are employed diagnostic methods in order to get a microscopic view of the relevant physical processes and to prove the correctness of the obtained data. The work is funded by BMBF under project number 13N8849. KW - Fluorescence KW - Reference material KW - Glass KW - Glass ceramic KW - Phosphor KW - Doped glass KW - Glass ceramics PY - 2007 SN - 0-8194-6247-0 U6 - https://doi.org/10.1117/12.728144 SN - 1605-7422 VL - 6628 SP - 662815-1 - 662815-9 AN - OPUS4-16729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Descalzo López, Ana Belén A1 - Xu, H.-J. A1 - Xue, Z.-L. A1 - Hoffmann, Katrin A1 - Shen, Z. A1 - Weller, Michael G. A1 - You, X.-Z. A1 - Rurack, Knut T1 - Phenanthrene-Fused Boron-Dipyrromethenes as Bright Long-Wavelength Fluorophores N2 - A new class of boron-dipyrromethene (BDP or BODIPY) dyes was obtained by phenanthrene fusion to the β-pyrrole positions, absorbing in the wavelength range of important laser sources. Despite a 'propeller-like' distorted structure in the crystalline state, the chromophore absorbs (log ε ≥ 5) and fluoresces (Φf ≥ 0.8) strongly and can be easily turned into a fluorescence light-up probe. Incorporation into latex beads produces bright and photostable single-dye and Förster Resonance Energy Transfer (FRET) particles for microscopy applications. KW - Fluoreszenz KW - Absorption KW - BODIPY-Farbstoffe KW - Ladungstransfer KW - NIR-Farbstoffe PY - 2008 U6 - https://doi.org/10.1021/ol800271e SN - 1523-7060 SN - 1523-7052 VL - 10 IS - 8 SP - 1581 EP - 1584 PB - American Chemical Society CY - Washington, DC AN - OPUS4-17511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martínez, R. A1 - Sancenón, F. A1 - Hoffmann, Katrin A1 - Rurack, Knut A1 - Descalzo López, Ana Belén T1 - Materiales híbridos en química analítica N2 - El desarrollo de receptores sintéticos complejos basados en conceptos de la química supramolecular no garantiza en ocasiones un reconocimiento molecular selectivo. Una alternativa en ciertos aspectos más simple y prometedora es el empleo de materiales híbridos orgánico-inorgánicos preparados mediante la funcionalización de sólidos inorgánicos porosos con receptores sintéticos adecuados. El anclaje de estos sistemas coordinantes a un soporte sólido da lugar a ciertos efectos sinérgicos que no están presentes ni en el material inicial ni en el receptor por separado y que sugieren que estos nuevos materiales híbridos pueden ser empleados en el desarrollo de nuevos sensores y nuevos protocolos de reconocimiento molecular y/o iónico. The development of synthetic receptors based in supramolecular chemistry concepts will no allow a selective molecular recognition. A more simple, convenient and innovative approach relies on the use of organic-inorganic hybrid materials. These hybrid materials will be prepared by the grafting of certain synthetic receptors onto porous inorganic solids. The grafting of these coordinating systems onto a solid support leads to synergic effects that are hardly achievable with only the synthetic receptors or the solids alone. The presence of these synergic effects suggests that these organic-inorganic hybrid materials will be used for the development of novel sensory systems and novel molecular and/or ionic recognitionprotocols. KW - Soportes inorgánicos KW - Receptores sintéticos KW - Materiales híbridos KW - Efectos sinérgicos KW - Química analítica KW - Inorganic supports KW - Synthetic receptors KW - Hybrid materials KW - Synergic effects KW - Analytical chemistry PY - 2007 SN - 1575-3417 VL - 103 IS - 4 SP - 22 EP - 27 PB - Springer AN - OPUS4-17512 LA - spa AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Marlow, F. T1 - Reversible photosensitive refractive index changes of chromophore/zeolite nanocomposites T2 - Abschlusskolloquium des DFG-Schwerpunktprogramms "Nanoporöse Kristalle" CY - Berlin, Germany DA - 2002-10-21 PY - 2002 AN - OPUS4-10907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rübner, Katrin A1 - Hoffmann, Dirk T1 - Characterization of mineral building materials by Mercury-Intrusion porosimetry N2 - Mineral building materials are generally heterogeneous and porous solids. Their engineering properties are closely associated with their porosity and pore-size distribution, which can be studied by mercury intrusion. The entire pore-size distribution curves are used to determine changes in the pore structure of a material class in a qualitative way. Certain parameters derived from pore-size distributions can be correlated to engineering properties. These key values are applied as criteria to evaluate the quality and durability of a building material. However, because of the heterogeneity of natural and artificial building materials and the influence of moisture content on their pore structure the results are strongly affected by preparation conditions such as sampling and drying. A correct analysis requires a knowledge of these effects. The paper describes the use of mercury porosimetry to study mineral building materials such as cementitious materials, bricks, and renderings. Furthermore, the influence of preparation effects on the precision of measurements is discussed. KW - Drying KW - Mercury-intrusion porosimetry KW - Mineral building material KW - Pore structure KW - Precision KW - Sampling PY - 2006 U6 - https://doi.org/10.1002/ppsc.200601008 SN - 0934-0866 SN - 1521-4117 VL - 23 IS - 1 SP - 20 EP - 28 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-12640 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Hoffmann, Angelika A1 - Pfeifer, Dietmar A1 - Monte, Christian T1 - Standardization of fluorescence techniques: Where do we stand and what do we need? T2 - National Physics Laboratory CY - London, England DA - 2006-06-26 PY - 2006 AN - OPUS4-12592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Mix, Renate A1 - Friedrich, Jörg F. A1 - Nitschke, R. T1 - Fluorescence microscopic and spetroscopic studies on functionalized polymer-supports labeled with amino sensitive fluorophores T2 - Focus on Microscopy (FoM) CY - Valencia, Spain DA - 2007-04-10 PY - 2007 AN - OPUS4-14864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Mix, Renate A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Decker, Renate A1 - Friedrich, Jörg Florian ED - Mittal, K. T1 - Covalent coupling of fluorophores to polymer surface-bonded functional groups KW - Plasma modification KW - Fluorescence KW - Surface functionalization KW - Reactions at polymer surfaces KW - Spectroscopy KW - Quantification PY - 2007 SN - 978-90-6764-453-2 VL - 4 SP - 171 EP - 191 PB - VSP CY - Utrecht AN - OPUS4-14867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mix, Renate A1 - Hoffmann, Katrin A1 - Buschmann, H.-J. A1 - Friedrich, Jörg Florian A1 - Resch-Genger, Ute T1 - Anbindung von Fluoreszenzfarbstoffen an plasmachemisch funktionalisierte und Cucurbituril-modifizierte Oberflächen N2 - Plasmapolymerisierte Allylaminschichten (50 nm) wurden auf Polypropylenfolien abgeschieden. Die auf diese Weise generierte NH2-funktionalisierte Polymeroberfläche wurde mit Xanthen-Fluorophoren chemisch umgesetzt. Da die Farbstoff-gekoppelten Folien nur geringe Fluoreszenz aufwiesen, wurden zwei Wege zur möglichen Entkopplung der Farbstoffe von der Oberfläche und damit zur Erhöhung der Fluoreszenzintensität getestet. Als erstes wurde ein Spacer durch die Umsetzung der primären Aminogruppen mit Glutaraldehyd und der nachfolgenden Kettenverlängerung mit Diaminohexan eingeführt. Diese nachfolgende Reaktion ergab eine spacergebundene NH2-Oberfläche, die analog der Allylaminschicht mit den Farbstoffen umgesetzt wurde. Als weiterer Weg wurde der Zusatz einer geeigneten Käfigverbindung, des Cucurbit[6]urils, getestet. Die spacergebundenen und zusätzlich mit Cucurbituril modifizierten aminofunktionellen Oberflächen zeigten nach der Farbstoffankopplung eine verbesserte Fluoreszenzintensität. KW - Fluoreszenz KW - Spacer KW - Cucurbituril PY - 2007 U6 - https://doi.org/10.1002/vipr.200700329 SN - 0947-076X SN - 1522-2454 VL - 19 IS - 5 SP - 31 EP - 37 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-16000 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Descalzo López, Ana Belén A1 - Hoffmann, Katrin A1 - Rurack, Knut A1 - Martínez-Mánez, Ramon A1 - Sancenón, F. T1 - Hybridmaterialien in der analytischen Chemie KW - Analytische Chemie KW - Hybridmaterialien KW - Sensorik KW - Fluoreszenz KW - Absorption KW - Mesoporöse Silicate KW - Goldnanopartikel KW - Quantenpunkte PY - 2007 SN - 1439-9598 SN - 1521-3854 VL - 55 IS - 02 SP - 124 EP - 129 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-16080 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Mix, Renate A1 - Resch-Genger, Ute A1 - Friedrich, Jörg Florian T1 - Monitoring of Amino Functionalities on Plasma-Chemically Modified Polypropylene Supports with a Chromogenic and Fluorogenic Pyrylium Reporter N2 - A straightforward strategy toward the sensitive fluorometric detection of primary amino groups on plasma-chemically modified polypropylene supports is presented, exploiting the transformation of the sterically nonhindered pyrylium dye Py-1 into its pyridinium counterpart. The reaction-induced blue-shifted absorption and emission bands and an increased fluorescence quantum yield provide the basis for the spectroscopic distinction between covalently bound and free, that is, nonspecifically adsorbed label molecules. With this label, for the first time, plasma-chemically introduced amino functionalities could be monitored on the surface of a polymer film employing fluorescence spectroscopy and confocal laser scanning microscopy. KW - Fluorescence spectroscopy KW - Surface characterization KW - Covalent labeling KW - Plasma modification KW - Fluorescent label PY - 2007 UR - http://pubs.acs.org/cgi-bin/abstract.cgi/langd5/2007/23/i16/abs/la7004908.html SN - 0743-7463 SN - 1520-5827 VL - 23 IS - 16 SP - 8411 EP - 8416 PB - American Chemical Society CY - Washington, DC AN - OPUS4-15717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Mix, Renate A1 - Resch-Genger, Ute A1 - Friedrich, Jörg Florian T1 - Fluorescence Measurements on Functionalized Polymer Surfaces - Problems and Troubleshooting KW - Fluorescence spectroscopy KW - Polymer functionalization KW - Surface labeling KW - Pyrylium label PY - 2008 U6 - https://doi.org/10.1196/annals.1430.015 SN - 0077-8923 SN - 1749-6632 SN - 0094-8500 VL - 1130 SP - 28 EP - 34 PB - New York Academy of Sciences CY - New York, NY AN - OPUS4-17567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Engel, A. T1 - Glass-based Reference Standards for Fluorescence Applications T2 - XIII International Symposium on Luminescence Spectrometry CY - Bologna, Italy DA - 2008-09-07 PY - 2008 AN - OPUS4-18055 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Engel, A. A1 - Ottermann, C. A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Schweizer, S. A1 - Selling, J. A1 - Spaeth, J.-M. A1 - Rupertus, V. ED - Grzymala, R. ED - Haeberlé, O. T1 - Glass based fluorescence reference materials used for optical and biophotonic applications N2 - Fluorescence techniques are known for their high sensitivity and are widely used as analytical tools and detection methods for product and process control, material sciences, environmental and biotechnical analysis, molecular genetics, cell biology, medical diagnostics, and drug screening. For routine measurements by fluorescence techniques the existence of an improved quality assurance is one of the basic needs. According to DIN/ISO 17025 certified standards are used for fluorescence diagnostics having the drawback of giving relative values only. Typical requirements onto fluorescence reference materials or standards deal with the verification of the instrument performance as well as the improvement of the data comparability. Especially for biomedical applications fluorescence labels are used for the detection of proteins. In particular these labels consist of nano crystalline materials like CdS and CdSe. The field of Non-Cadmium containing materials is under investigation. In order to evaluate whether glass based materials can be used as standards it is necessary to calculate absolute values like absorption/excitation cross sections or relative quantum yields. This can be done using different quantities of dopands in glass, glass ceramics or crystals. The investigated materials are based on different types of glass, silicate, phosphate and boron glass, which play a dominant role for the absorption and emission mechanism. Additional to the so-called elementary fluorescence properties induced by raw earth elements the formation of defects lead to higher cross sections additionally. The main investigations deal with wavelength accuracy and lifetime of doped glasses, glass ceramics and crystalline samples. Moreover intensity patterns, homogeneity aspects and photo stability will be discussed. KW - Fluorescence KW - Reference material KW - Glass KW - Glass ceramics KW - Biophotonic KW - Multiplexing PY - 2006 U6 - https://doi.org/10.1117/12.663627 SN - 1605-7422 VL - 6191 SP - 619110-1-619110-10 AN - OPUS4-14429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Mix, Renate A1 - Friedrich, Jörg F. T1 - Fluorescence studies on functionalized polypropylene supports using an amino-sensitive fluorogenic pyrylium T2 - Method and Application of Fluorescence (MAF10) CY - Salzburg, Austria DA - 2007-09-09 PY - 2007 AN - OPUS4-16409 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Engel, A. T1 - Glass-based reference standards for fluorescence applications KW - Fluorescence standard KW - Luminophore-doped glass KW - Reference material KW - Instrument qualification PY - 2008 SN - 1522-7235 SN - 1099-1271 SN - 1522-7243 VL - 23 SP - 229 EP - 230 PB - Wiley CY - Chichester AN - OPUS4-18256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Descalzo López, Ana Belén A1 - Martínez-Mánez, Ramon A1 - Sancenón, F. A1 - Hoffmann, Katrin A1 - Rurack, Knut T1 - Die supramolekulare Chemie organisch-anorganischer Hybrid-Nanomaterialien N2 - Die Entwicklung von Hybridmaterialien mit stark verbesserten Funktionen gelingt durch die Kombination geeigneter Nanomaterialien als Träger mit Motiven aus der supramolekularen Chemie. Diese hetero-supramolekularen Konzepte bieten vielfältige Möglichkeiten, die Lücken zwischen der Molekülchemie, Materialwissenschaften und Nanotechnologie zu schließen. Im Hinblick auf funktionelle Aspekte wurden in jüngster Zeit wichtige Fortschritte erzielt, z. B. verbesserte Erkennungs- und Sensoreigenschaften durch die Anordnung von Molekülen auf vororganisierten Oberflächen, der reversible Aufbau von nanometergroßen Netzwerken und dreidimensionalen Strukturen oder biomimetische und gesteuerte chemische Prozesse in Hybrid-Nanomaterialien, die als Grundlage für hoch spezialisierte Protokolle in dreidimensionalen Gerüststrukturen dienen können. Diese Ansätze ermöglichen eine Feinabstimmung der Eigenschaften von Nanomaterialien und eröffnen neue Perspektiven für die Anwendung supramolekularer Konzepte. KW - Supramolekulare Chemie KW - Anorganisch-organische Hybridmaterialien KW - Sensorik KW - Molekulare Maschinen KW - Aggregation KW - Mesoporöse Materialien KW - Molekulare Erkennung KW - Nanopartikel KW - Sensoren PY - 2006 U6 - https://doi.org/10.1002/ange.200600734 SN - 0044-8249 SN - 0932-2140 SN - 1521-3757 VL - 118 IS - 36 SP - 6068 EP - 6093 PB - Wiley-VCH CY - Weinheim AN - OPUS4-12821 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Descalzo López, Ana Belén A1 - Martínez-Mánez, Ramon A1 - Sancenón, F. A1 - Hoffmann, Katrin A1 - Rurack, Knut T1 - The Supramolecular Chemistry of Organic-Inorganic Hybrid Materials N2 - The combination of nanomaterials as solid supports and supramolecular concepts has led to the development of hybrid materials with improved functionalities. These hetero-supramolecular ideas provide a means of bridging the gap between molecular chemistry, materials sciences, and nanotechnology. In recent years, relevant examples have been reported on functional aspects, such as enhanced recognition and sensing by using molecules on preorganized surfaces, the reversible building of nanometer-sized networks and 3D architectures, as well as biomimetic and gated chemistry in hybrid nanomaterials for the development of advanced functional protocols in three-dimensional frameworks. This approach allows the fine-tuning of the properties of nanomaterials and offers new perspectives for the application of supramolecular concepts. KW - Aggregation KW - Mesoporous materials KW - Molecular recognition KW - Nanoparticles KW - Sensors PY - 2006 U6 - https://doi.org/10.1002/anie.200600734 SN - 1433-7851 SN - 1521-3773 SN - 0570-0833 VL - 45 IS - 36 SP - 5924 EP - 5948 PB - Wiley-VCH CY - Weinheim AN - OPUS4-12824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Felbeck, Tom A1 - Behnke, Thomas A1 - Hoffmann, Katrin A1 - Grabolle, Markus A1 - Lezhnina, M.M. A1 - Kynast, U.H. A1 - Resch-Genger, Ute T1 - Nile-red-nanoclay hybrids: Red emissive optical probes for use in aqueous dispersion N2 - Water-dispersible and (bio)functionalizable nanoclays have a considerable potential as inexpensive carriers for organic molecules like drugs and fluorophores. Aiming at simple design strategies for red-emissive optical probes for the life sciences from commercial precursors with minimum synthetic effort, we systematically studied the dye loading behavior and stability of differently functionalized laponites. Here, we present a comprehensive study of the absorption and emission properties of the red emissive hydrophobic and neutral dye Nile Red, a well-known polarity probe, which is almost insoluble and nonemissive in water. Adsorption of this probe onto disk-shaped nanoclays was studied in aqueous dispersion as function of dye concentration, in the absence and presence of the cationic surfactant cetyltrimethylammonium bromide (CTAB) assisting dye loading, and as a function of pH. This laponite loading strategy yields strongly fluorescent nanoclay suspensions with a fluorescence quantum yield of 0.34 at low dye loading concentration. The dye concentration-, CTAB-, and pH-dependent absorption, fluorescence emission, and fluorescence excitation spectra of the Nile-Red6#8211;nanoclay suspensions suggest the formation of several Nile Red species including emissive Nile Red monomers facing a polar environment, nonemissive H-type dimers, and protonated Nile Red molecules that are also nonfluorescent. Formation of all nonemissive Nile Red species could be suppressed by modification of the laponite with CTAB. This underlines the great potential of properly modified and functionalized laponite nanodisks as platform for optical probes with drug delivery capacities, for example, for tumor and therapy imaging. Moreover, comparison of the Nile Red dimer absorption spectra with absorption spectra of previously studied Nile Red aggregates in dendrimer systems and micelles and other literature systems reveals a considerable dependence of the dimer absorption band on microenvironment polarity which has not yet been reported so far for H-type dye aggregates. KW - Nile Red KW - Dye KW - Laponite KW - Nanoclay KW - Photoluminescence KW - Fluorescence KW - Polarity probe KW - Aggregate KW - Dimer PY - 2013 UR - http://pubs.acs.org/doi/pdf/10.1021/la402165q U6 - https://doi.org/10.1021/la402165q SN - 0743-7463 SN - 1520-5827 VL - 29 IS - 36 SP - 11489 EP - 11497 PB - American Chemical Society CY - Washington, DC AN - OPUS4-29017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Behnke, Thomas A1 - Drescher, Daniela A1 - Kneipp, Janina A1 - Resch-Genger, Ute T1 - Near-infrared-emitting nanoparticles for lifetime-based multiplexed analysis and imaging of living cells N2 - The increase in information content from bioassays and bioimaging requires robust and efficient strategies for the detection of multiple analytes or targets in a single measurement, thereby addressing current health and security concerns. For fluorescence techniques, an attractive alternative to commonly performed spectral or color multiplexing presents lifetime multiplexing and the discrimination between different fluorophores based on their fluorescence decay kinetics. This strategy relies on fluorescent labels with sufficiently different lifetimes that are excitable at the same wavelength and detectable within the same spectral window. Here, we report on lifetime multiplexing and discrimination with a set of nanometer-sized particles loaded with near-infrared emissive organic fluorophores chosen to display very similar absorption and emission spectra, yet different fluorescence decay kinetics in suspension. Furthermore, as a first proof-of-concept, we describe bioimaging studies with 3T3 fibroblasts and J774 macrophages, incubated with mixtures of these reporters employing fluorescence lifetime imaging microscopy. These proof-of-concept measurements underline the potential of fluorescent nanoparticle reporters in fluorescence lifetime multiplexing, barcoding, and imaging for cellular studies, cell-based assays, and molecular imaging. KW - Fluorescence lifetime imaging microscopy KW - FLIM KW - Lifetime multiplexing KW - Near infrared KW - NIR KW - Cell imaging KW - Nanoparticles PY - 2013 U6 - https://doi.org/10.1021/nn4029458 SN - 1936-0851 VL - 7 IS - 8 SP - 6674 EP - 6684 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-29031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Behnke, Thomas A1 - Resch-Genger, Ute A1 - Drescher, D. A1 - Kneipp, Janina T1 - FLIM Imaging and Lifetime-Based Multiplexed Analysis with NIR-Fluorescent Nanoparticles T2 - 13. Conference on Methods and Applications Flourescence CY - Genoa, Italy DA - 2013-09-08 PY - 2013 AN - OPUS4-29228 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pietschmann, S. A1 - Hoffmann, Katrin A1 - Voget, M. A1 - Pison, U. T1 - Synergistic effects of miconazole and polymyxin B on microbial pathogens N2 - The therapeutic value of antibiotics depends on the susceptibility of the infecting microorganism and the pharmacological profile of the drugs. To assess the value of an antibiotic combination of polymyxin B and miconazole this study examined the in vitro synergistic potential of the two drugs on Gram-negative and Gram-positive bacteria and yeast. Antifungal and antibacterial activity was tested by minimum inhibitory concentration (MIC) of broth macrodilution and urea broth microdilution, by fluorescence microscopy and flow cytometry. Synergism was calculated using the fractional inhibitory concentration index (FICi). With Staphylococcus intermedius as target we found up to an eightfold reduction of the individual MICs when both drugs were combined. However, the FICi was 0.63 suggesting no real interaction between the two drugs. With Escherichia coli, Pseudomonas aeruginosa, and Malassezia pachydermatis as targets the antimicrobial drug combination reduced the MICs of polymyxin B and miconazole from fourfold to hundredfold resulting in FICi between 0.06 and 0.5 which defines a synergistic action. Thus, if polymyxin B and miconazole are combined their effect is greater than the sum of the effects observed with polymyxin B and miconazole independently, revealing bactericidal and fungicidal synergism. Our results indicate a strong therapeutic value for the combination of these antimicrobial agents against Gram-negative bacteria and yeast and a weaker value against Gram positive bacteria for clinical situations where these pathogens are involved. KW - Miconazale KW - Polymyxin KW - Antibiotic synergism KW - Otitis externa PY - 2009 U6 - https://doi.org/10.1007/s11259-008-9194-z SN - 0165-7380 VL - 33 IS - 6 SP - 489 EP - 505 PB - Kluwer CY - Dordrecht [u.a.] AN - OPUS4-19661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hoffmann, Katrin A1 - Mix, Renate A1 - Friedrich, Jörg Florian A1 - Resch-Genger, Ute ED - Geddes, C.D. T1 - Spectroscopic characterization of plasma - Chemically functionalized and fluorophore-labeled polymer surfaces N2 - The potential of spectrofluorometry and fluorescence microscopy for the characterization and quantification of different functionalities like OH and NH2 groups at plasma-chemically modified polymer surfaces is assessed using traditional reactive dyes such as dansyl derivatives and a sophisticated VIS-excitable chromogenic and fluorogenic pyrylium label showing binding-induced spectral and intensity changes in absorption and emission. Aiming at an improved fluorometric surface analysis, based upon these measurements, several sources of uncertainty inherent to fluorescence measurements are illustrated ranging from environment-dependent dye absorption and emission features over spectral correction and nonspecific adsorption to the critical influence of label choice on the measured background. Solutions to these drawbacks are given thereby underlining the potential of fluorometry for surface analysis. KW - Polymer functionalization KW - Plasma modification KW - Fluorescence spectroscopy KW - Surface labeling PY - 2010 SN - 978-1-4419-0828-5 U6 - https://doi.org/10.1007/978-1-4419-1260-2_6 N1 - Serientitel: Reviews in Fluorescence – Series title: Reviews in Fluorescence VL - 5 SP - 139 EP - 160 PB - Springer Science + Business Media AN - OPUS4-21274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Behnke, Thomas A1 - Würth, Christian A1 - Hoffmann, Katrin A1 - Hübner, Martin A1 - Panne, Ulrich A1 - Resch-Genger, Ute T1 - Encapsulation of hydrophobic dyes in polystyrene micro- and nanoparticles via swelling procedures N2 - Aiming at the derivation of a generalized procedure for the straightforward preparation of particles fluorescing in the visible and near-infrared (NIR) spectral region, different swelling procedures for the loading of the hydrophobic polarity-probe Nile Red into nano- and micrometer sized polystyrene particles were studied and compared with respect to the optical properties of the resulting particles. The effect of the amount of incorporated dye on the spectroscopic properties of the particles was investigated for differently sized beads with different surface chemistries, i.e., non-functionalized, aminomodified and PEG-grafted surfaces. Moreover, photostability and leaking studies were performed. The main criterion for the optimization of the dye loading procedures was a high and thermally and photochemically stable fluorescence output of the particles for the future application of these systems as fluorescent labels. KW - Fluorescence KW - Nile red KW - Polystyrene KW - Nanoparticles KW - Microparticles KW - Encapsulation KW - Swelling PY - 2011 U6 - https://doi.org/10.1007/s10895-010-0632-2 SN - 1053-0509 SN - 1573-4994 VL - 21 IS - 3 SP - 937 EP - 944 PB - Plenum Publ. Corp. CY - New York, NY AN - OPUS4-22692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Behnke, Thomas A1 - Drescher, Daniela A1 - Kneipp, Janina A1 - Resch-Genger, Ute T1 - Lifetime-based Discrimination between Spectrally Matching vis and NIR Ermitting Particle Labels and Probes T2 - BIOS SPIE Photonics West 2011 CY - San Francisco, CA, USA DA - 2011-01-22 PY - 2011 AN - OPUS4-23534 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Lochmann, Cornelia A1 - Spieles, Monika A1 - Pauli, Jutta A1 - Hoffmann, Katrin A1 - Schüttrigkeit, T. A1 - Franzl, T. A1 - Resch-Genger, Ute T1 - Evaluation of a commercial integrating sphere setup for the determination of absolute photoluminescence quantum yields of dilute dye solutions N2 - The commercial availability of stand-alone setups for the determination of absolute photoluminescence quantum yields (φf) in conjunction with the increasing use of integrating sphere accessories for spectrofluorometers is expected to have a considerable influence not only on the characterization of chromophore systems for use in optical and opto-electronic devices, but also on the determination of this key parameter for (bio)analytically relevant dyes and functional luminophores. Despite the huge potential of systems measuring absolute φf values and the renewed interest in dependable data, evaluated protocols for even the most elementary case, the determination of the fluorescence quantum yield of transparent dilute solutions of small organic dyes with integrating sphere methods, are still missing. This encouraged us to evaluate the performance and sources of uncertainty of a simple commercial integrating sphere setup with dilute solutions of two of the best characterized fluorescence quantum yield standards, quinine sulfate dihydrate and rhodamine 101, strongly differing in spectral overlap between absorption and emission. Special attention is dedicated to illustrate common pitfalls of this approach, thereby deriving simple procedures to minimize measurement uncertainties and improve the comparability of data for the broad community of users of fluorescence techniques. KW - Lifetime KW - Fluorescence KW - Luminescence KW - Quantum yield KW - Quantum efficiency KW - Integrating sphere KW - Reabsorption KW - Rhodamine 101 KW - Quinine sulfate dihydrate KW - Method KW - Photoluminescence KW - Standard KW - Emission KW - Spectral correction KW - Excitation KW - Anisotropy PY - 2010 U6 - https://doi.org/10.1366/000370210791666390 SN - 0003-7028 SN - 1943-3530 VL - 64 IS - 7 SP - 733 EP - 741 PB - Society for Applied Spectroscopy CY - Frederick, Md. AN - OPUS4-22089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Behnke, Thomas A1 - Resch-Genger, Ute T1 - Lifetime-based Discrimination Between Spectrally Matching vis and NIR Emitting Particle Labels and Probes T2 - 16th International Workshop on "Single Molecule Spectroscopy and Ultra Sensitive Analysis in the Life Sciences" CY - Berlin, Germany DA - 2010-09-15 PY - 2010 AN - OPUS4-22084 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Behnke, Thomas A1 - Würth, Christian A1 - Laux, Eva-Maria A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute T1 - Simple strategies towards bright polymer particles via one-step staining procedures N2 - In order to develop simple and versatile procedures for the preparation of red emissive particles, various one-step swelling procedures for the loading of fluorophores into nanometer- and micrometer-sized polystyrene particles were systematically assessed. Parameters studied for model dyes from common dye classes include the composition of the swelling medium, dye charge and polarity, dye concentration, and particle surface chemistry. The dye loading procedures were compared based upon the efficiency of dye incorporation, fluorescence intensity, and colloidal stability of the resulting particles as well as the absence of dye leaking as determined by absorption and fluorescence spectroscopy, flow cytometry, and measurements of zeta potentials. In addition, for the first time, the influence of the amount of incorporated dye on the absolute fluorescence quantum yield and brightness of the fluorescent particles was investigated for selected chromophores in differently sized particles using a custom-made calibrated integrating sphere setup. Our results demonstrate the general suitability of these one-step loading procedures for efficient particle staining with neutral, zwitterionic, and charged fluorophores like oxazines, coumarines, squaraines, xanthenes, and cyanines emitting in the visible and near infrared. Dye polarity was identified as a suitable tool to estimate the loading efficiency of fluorophores into these polymer particles. KW - Fluorescence KW - Polystyrene KW - Particles KW - Encapsulation KW - Quantum yield KW - Zeta potential KW - Method KW - Label KW - Particle KW - Polymer KW - Absolute fluorescence quantum yield KW - Fluorophore KW - Dye content KW - Surface groups KW - Size KW - Brightness PY - 2012 U6 - https://doi.org/10.1016/j.dyepig.2012.01.021 SN - 0143-7208 SN - 1873-3743 VL - 94 IS - 2 SP - 247 EP - 257 PB - Elsevier Ltd. CY - Kidlington AN - OPUS4-25481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laux, Eva-Maria A1 - Behnke, Thomas A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute T1 - Keeping particles brilliant - simple methods for the determination of the dye content of fluorophore-loaded polymeric particles N2 - One of the most active research areas in the life and material sciences is the design and synthesis of fluorescent nano- and micrometre sized particles for applications e.g. as labels, sensor systems, and platforms for fluorescence assays or barcoding materials. The reliable and reproducible fabrication of such particles as well as many applications require accurate, simple, and versatile procedures for the determination of the dye content per particle which affects e.g. the brightness of these materials and their surface charge and thus, colloidal stability. Here, four fast and inexpensive spectroscopic methods for the quantification of the fluorophore content of beads are presented and compared for nanometre- and micrometre sized polystyrene particles loaded or labeled with commercial fluorophores, differing in dye class, charge, and hydrophilicity. This included the determination of the amount of incorporated dye from absorption spectra of bead suspensions, via dissolving of the polymer matrix, via extraction of the polymer matrix, and from the supernatant of the swelling solution or reaction mixture. Method validation was performed with a sulfur-containing dye and elemental analysis. Based upon this method comparison and the accomplishable uncertainties, two reliable strategies for particle characterization and bead process control are identified that can be easily extended to other materials. PY - 2012 U6 - https://doi.org/10.1039/c2ay05822g SN - 1759-9660 SN - 1759-9679 VL - 4 IS - 6 SP - 1759 EP - 1768 PB - RSC Publ. CY - Cambridge AN - OPUS4-26051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Behnke, Thomas A1 - Grabolle, Markus A1 - Resch-Genger, Ute T1 - Nanoparticle-encapsulated vis- and NIR-emissive fluorophores with different fluorescence decay kinetics for lifetime multiplexing N2 - Bioanalytical, clinical, and security applications increasingly require simple, efficient, and versatile strategies to measure an ever increasing number of analytes or events in parallel in a broad variety of detection formats as well as in conjunction with chromatographic separation techniques or flow cytometry. An attractive alternative to common optical multiplexing and encoding methods utilizing spectral multiplexing/color encoding and intensity encoding is lifetime multiplexing, which relies on the discrimination between different fluorescent reporters based on their fluorescence decay kinetics. Here, we propose a platform of surface-functionalizable polymeric nanoparticles stained with fluorophores differing in their fluorescence lifetimes as a new multiplexing and encoding approach. Proof-of-concept measurements with different sets of lifetime-encoded polystyrene nanoparticles are presented, obtained via staining of preformed particles with visible (vis)- and near-infrared (NIR)-emissive organic dyes, which display very similar absorption and emission spectra to enable excitation and detection at the same wavelengths, yet sufficiently different fluorescence decay kinetics in suspension, thereby minimizing instrumentation costs. Data analysis was performed with a linear combination approach in the lifetime domain. Our results and first cell experiments with these reporter sets underline the suitability of our multiplexing strategy for the discrimination between and the quantification of different labels. This simple and versatile concept can be extended to all types of fluorophores, thereby expanding the accessible time scale, and can be used, e.g., for the design of labels and targeted probes for fluorescence assays and molecular imaging, cellular imaging studies, and barcoding applications, also in conjunction with spectral and intensity encoding. KW - Fluorescent label KW - Multiplexing KW - Optical KW - encoding KW - Lifetime multiplexing KW - Fluorescence lifetime imaging FLIM KW - Nanoparticles PY - 2014 U6 - https://doi.org/10.1007/s00216-013-7597-3 SN - 1618-2642 SN - 1618-2650 VL - 406 IS - 14 SP - 3315 EP - 3322 PB - Springer CY - Berlin AN - OPUS4-30077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biesen, L. A1 - May, L. A1 - Nirmalananthan-Budau, Nithiya A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Müller, T. J. J. T1 - Communication of Bichromophore Emission upon Aggregation – Aroyl-S,N-ketene Acetals as Multifunctional Sensor Merocyanines N2 - Aroyl-S,N-ketene acetal-based bichromophores can be readily synthesized in a consecutive three-component synthesis in good to excellent yields by condensation of aroyl chlorides and an N-(p-bromobenzyl) 2-methyl benzothiazolium salt followed by a Suzuki coupling, yielding a library of 31 bichromophoric fluorophores with substitution patterntunable emission properties. Varying both chromophores enables different communication pathways between the chromophores, exploiting aggregation-induced emission (AIE) and energy transfer (ET) properties, and thus, furnishing aggregation-based fluorescence switches. Possible applications range from fluorometric analysis of alcoholic beverages to pH sensors. KW - Dye KW - Fluorescence KW - Aggregation induced emission KW - Signal enhancement KW - Energy transfer KW - Switch KW - Sensor KW - Quantum yield KW - Lifetime KW - Photophysics KW - Synthesis PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-531123 VL - 27 IS - 53 SP - 13426 EP - 13434 PB - Wiley-VCH AN - OPUS4-53112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xu, R. A1 - Teich, W. A1 - Frenzel, Florian A1 - Hoffmann, Katrin A1 - Radke, J. A1 - Rösler, J. A1 - Faust, K. A1 - Blank, A. A1 - Brandenburg, S. A1 - Misch, M. A1 - Vajkoczy, P. A1 - Onken, J. S. A1 - Resch-Genger, Ute T1 - Optical characterization of sodium fluorescein in vitro and ex vivo N2 - Objective: The utilization of fluorescein-guided biopsies and resection has been recently discussed as a suitable strategy to improve and expedite operative techniques for the resection of central nervous system (CNS) tumors. However, little is known about the optical properties of sodium fluorescein (NaFl) in human tumor tissue and their potential impact on ex vivo analyses involving fluorescence-based methods. Methods: Tumor tissue was obtained from a study cohort of an observational study on the utilization of fluorescein-guided biopsy and resection (n=5). The optical properties of fluorescein-stained tissue were compared to the optical features of the dye in vitro and in control samples consisting of tumor tissue of high-grade glioma patients (n=3) without intravenous (i.v.) application of NaFl. The dye-exposed tumor tissues were used for optical measurements to confirm the detectability of NaFl emission ex vivo. The tissue samples were fixed in 4%PFA, immersed in 30% sucrose, embedded in Tissue-Tek OCT compound, and cut to 10 mm cryosections. Spatially resolved emission spectra from tumor samples were recorded on representative slides with a Confocal Laser Scanning Microscope FV1000 (Olympus GmbH, Hamburg, Germany) upon excitation with lexc = 488 nm. Results: Optical measurements of fluorescein in 0.9% sodium chloride (NaCl) under in vitro conditions showed an absorption maximum of lmax abs = 479 nm as detected with spectrophotometer Specord 200 and an emission peak at lmax em = 538 nm recorded with the emCCD detection system of a custom-made microscope-based single particle setup using a 500 nm long-pass filter. Further measurements revealed pH- and concentration-dependent emission spectra of NaFl. Under ex vivo conditions, confocal laser scanning microscopy of fluorescein tumor samples revealed a slight bathochromic shift and a broadening of the emission band. Conclusion: Tumor uptake of NaFl leads to changes in the optical properties – a bathochromic shift and broadening of the emission band – possibly caused by the dye’s high pH sensitivity and concentration-dependent reabsorption acting as an innerfilter of the dye’s emission, particularly in the short wavelength region of the Emission spectrum where absorption and fluorescence overlap. Understanding the ex vivo optical properties of fluorescein is crucial for testing and validating its further applicability as an optical probe for intravital microscopy, immunofluorescence localization studies, and flow cytometry analysis. KW - Fluorescence KW - Optical probe KW - Sensor KW - Fluorescein KW - PH KW - Imaging KW - Tissue KW - Cancer KW - Medical diagnostics KW - Tumor KW - In vivo KW - Ex vivo KW - Quantum yield KW - Dye KW - Quality assurance KW - Microscopy PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-527843 SN - 2234-943X VL - 11 SP - 1 EP - 8 PB - Frontiers Media CY - Lausanne AN - OPUS4-52784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kittler, Katrin A1 - Hoffmann, Holger A1 - Lindemann, Franziska A1 - Koch, Matthias A1 - Rohn, S. A1 - Maul, Ronald T1 - Biosynthesis of 15N-labeled cylindrospermopsin and its application as internal standard in stable isotope dilution analysis N2 - Cylindrospermopsin (CYN) is a cyanobacterial toxin associated with human and animal poisonings. Due to its toxicity in combination with its widespread occurrence, the development of reliable methods for selective, sensitive detection and accurate quantification is mandatory. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis using stable isotope dilution analysis (SIDA) represents an ideal tool for this purpose. U-[15N5]-CYN was synthesized by culturing Aphanizomenon flos-aquae in Na15NO3-containing cyanobacteria growth medium followed by a cleanup using graphitized carbon black columns and mass spectrometric characterization. Subsequently, a SIDA-LC-MS/MS method for the quantification of CYN in freshwater and Brassica matrices was developed showing satisfactory performance data. The recovery ranged between 98 and 103 %; the limit of quantification was 15 ng/L in freshwater and 50 µg/kg dry weight in Brassica samples. The novel SIDA was applied for CYN determination in real freshwater samples as well as in kale and in vegetable mustard exposed to toxin-containing irrigation water. Two of the freshwater samples taken from German lakes were found to be CYN-contaminated above limit of quantification (17.9 and 60.8 ng/L). CYN is systemically available to the examined vegetable species after exposure of the rootstock leading to CYN mass fractions in kale and vegetable mustard leaves of 15.0 µg/kg fresh weight and 23.9 µg/kg fresh weight, respectively. CYN measurements in both matrices are exemplary for the versatile applicability of the developed method in environmental analysis. KW - Cyanotoxin KW - Quantification KW - Surface water KW - Vegetable plants KW - SIDA KW - HPLC-MS/MS PY - 2014 U6 - https://doi.org/10.1007/s00216-014-8026-y SN - 1618-2642 SN - 1618-2650 VL - 406 IS - 24 SP - 5765 EP - 5774 PB - Springer CY - Berlin AN - OPUS4-31566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Pauli, Jutta ED - Brahme, A. T1 - Signal-relevant properties of fluorescent labels and optical probes and their determination PY - 2014 SN - 978-0-444-53632-7 U6 - https://doi.org/10.1016//B978-0-444-53632-7.00408-1 VL - 4 SP - Chapter 4.02, 15 EP - 26 PB - Elsevier CY - Amsterdam AN - OPUS4-31433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Nitschke, R. ED - O.S. Wolfbeis, ED - Resch-Genger, Ute T1 - Comparability of fluorescence microscopy data and need for instrument characterization of spectral scanning microscopes N2 - The aim of this article is to illustrate the need for an improved quality assurance in fluorescence microscopy. From the instrument-side, this can be achieved by a better understanding, consideration, and regular control of the instrument-specific parameters and quantities affecting measured fluorescence signals. Particularly, the need for requirements on physical- and chemical-type instrument standards for the characterization and performance validation of spectral fluorescence microscopes (SFMs) is discussed and suitable systems are presented. Special emphasis is given to spectral fluorescence standards and to day-to-day intensity standards for SFMs. Fluorescence standards and well-characterized fluorescence microscopes are the first and essential steps towards the comparability and the understanding of the variability in fluorescence microscopy data in medical and life sciences. In addition, standards enable the distinction between instrument-specific variations and fluorescent label- or probe-related uncertainties as well as generally sample-related effects. KW - Fluorescence spectroscopy KW - Fluorescence microscopy KW - Quality assurance KW - Calibration KW - Standard KW - Comparability KW - Quantification PY - 2008 SN - 978-3-540-70570-3 U6 - https://doi.org/10.1007/4243_2008_028 SN - 1617-1306 N1 - Serientitel: Springer Series on Fluorescence – Series title: Springer Series on Fluorescence VL - 6 IS - Part A SP - 89 EP - 116 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-18995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engel, A. A1 - Ottermann, C. A1 - Klahn, J. A1 - Korb, T. A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Kynast, U. A1 - Rupertus, V. ED - Dan V. Nicolau, ED - Daniel L. Farkas, ED - Robert C. Leif, T1 - Anorganic fluorescence reference materials for decay time of fluorescence emission N2 - Fluorescence techniques are known for their high sensitivity and are widely used as analytical tools, detection methods and imaging applications for product and process control, material sciences, environmental and bio-technical analysis, molecular genetics, cell biology, medical diagnostics, and drug screening. According to DIN/ISO 17025 certified standards are used for steady state fluorescence diagnostics, a method having the drawback of giving relative values for fluorescence intensities only. Therefore reference materials for a quantitative characterization have to be related directly to the materials under investigation. In order to evaluate these figures it is necessary to calculate absolute numbers such as absorption/excitation cross sections and quantum yield. This has been done for different types of dopands in different materials such as glass, glass ceramics, crystals or nano crystalline material embedded in polymer matrices. Samples doped with several fluophores of different emission wavelengths and decay times are required for fluorescent multiplexing applications. Decay times shorter than 100 ns are of special interest. In addition, a proper knowledge is necessary of quantum efficiency in highly scattering media. Recently, quantum efficiency in YAG:Ce glass ceramics has been successfully investigated. Glass and glass ceramics doped with threefold charged rare earth elements are available. However, these samples have the disadvantage of emission decay times much longer than 1 microsecond, due to the excitation and emission of their optical forbidden electronic transitions. Therefore first attempts have been made to produce decay-time standards based on organic and inorganic fluophores. Stable LUMOGEN RED pigments and YAG:Ce phosphors are diluted simultaneously in silicone matrices using a wide range of concentrations between 0.0001 and 2 wt%. Organic LUMOGEN RED has decay times in the lower nanosecond range with a slight dependency on concentration and temperature. In addition, the well-known decay properties of inorganic YAG:Ce are observed also embedded in silicone matrix. Luminescent silicone layers are obtained with thicknesses between 150 and 300 m and no change of decay time, which has been determined to be between 60 and 62 ns. Finally, first results are shown for fluorescent CaF2:Pb glass ceramics embedded in a silicate glass matrix. Wavelength accuracy and lifetime are characterized for different environmental conditions such as temperature treatment and UV irradiation. Moreover, intensity patterns, e.g. line profiles and results, are discussed on homogeneity and photo and thermal stability, respectively. Fluorescence (steady state, decay time) and absorption (remission, absorption) spectroscopy are employed as diagnostic methods to get a microscopic view of the relevant physical processes. The work is funded by BMBF under project number 13N8849. KW - Fluorescence KW - Reference material KW - Glass KW - Glass ceramic KW - Phosphor KW - Doped glass and glass ceramics PY - 2008 SN - 978-0-8194-7034-8 U6 - https://doi.org/10.1117/12.767633 VL - 6859 SP - 68591A-1 - 68591A-10 PB - SPIE, the International Society for Optical Engineering CY - Bellingham, Wash. AN - OPUS4-19800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Pfeifer, Dietmar ED - Chris D. Geddes, T1 - Simple calibration and validation standards for fluorometry KW - Fluorescence KW - Standard KW - Spectral correction KW - Emission KW - Glass KW - Quantum yield KW - Fluorescence intensity KW - Quality assurance PY - 2009 SN - 978-0-387-88721-0 U6 - https://doi.org/10.1007/978-0-387-88722-7_1 SN - 1573-8086 N1 - Serientitel: Reviews in Fluorescence – Series title: Reviews in Fluorescence VL - 4 SP - 1 EP - 31 PB - Springer Science + Business Media AN - OPUS4-19830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Sewohl, Dirk A1 - Resch-Genger, Ute T1 - Evaluation of Lanthanide-doped Glasses for Use as standards in Fluorometry T2 - First International Conference on Luminescence of Lanthanides CY - Odessa, Ukraine DA - 2010-09-05 PY - 2010 AN - OPUS4-21566 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Engel, A. A1 - Bäumle, M. T1 - Reference standards for the performance validation of fluorescence measurement systems T2 - 11th International Conference on Methods and Applications of Fluorescence: Spectroscopy, Imaging and Probes CY - Budapest, Hungary DA - 2009-09-06 PY - 2009 AN - OPUS4-20424 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Behnke, Thomas A1 - Drescher, Daniela A1 - Kneipp, Janina A1 - Resch-Genger, Ute T1 - Lifetime-based discrimination between spectrally matching vis and NIR emitting particle labels and probes N2 - Increasing the information content from bioassays which requires robust and efficient strategies for the detection of multiple analytes or targets in a single measurement is an important field of research, especially in the context of meeting current security and health concerns. An attractive alternative to spectral multiplexing, which relies on fluorescent labels excitable at the same wavelength, yet sufficiently differing in their emission spectra or color presents lifetime multiplexing. For this purpose, we recently introduced a new strategy based on 'pattern-matching' in the lifetime domain, which was exemplary exploited for the discrimination between organic dyes and quantum dot labels revealing multi-exponential decay kinetics and allowed quantification of these labels. Meanwhile, we have succeeded in extending this lifetime multiplexing approach to nanometer-sized particle labels and probes absorbing and emitting in the visible (vis) and near-infrared (NIR) spectral region. Here, we present a first proof-of-principle of this approach for a pair of NIR-fluorescent particles. Each particle is loaded with a single organic dye chosen to display very similar absorption and emission spectra, yet different fluorescence decay kinetics. Examples for the lifetime-based distinction between pairs of these fluorescent nanoparticles in solution and in cells are presented. The results underline the potential of fluorescenc lifetime multiplexing in life science and bioanalysis. KW - Fluorescence KW - Fluorescence lifetime imaging microscopy KW - FLIM KW - Lifetime Multiplexing KW - Particle Label KW - Near-infrared KW - NIR KW - Cell imaging KW - Nanoparticles PY - 2011 U6 - https://doi.org/10.1117/12.881442 SN - 1605-7422 VL - 7905 SP - 79051F-1 EP - 79051F-9 PB - SPIE, The International Society for Optical Engineering CY - Bellingham, Wash. AN - OPUS4-23637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Mix, Renate A1 - Friedrich, Jörg Florian A1 - Buschmann, H.-J. A1 - Resch-Genger, Ute T1 - Anchoring of Fluorophores to plasma-chemically modified polymer surfaces and the effect of Cucurbit[6]uril on dye emission N2 - Polypropylene supports were functionalized by plasma-deposition of polymeric allylamine layers. The surface amino groups generated were wet-chemically reacted with xanthene dyes resulting in fluorescent polymer films. The effect of polymer-attachment of the dyes on their emission features was studied fluorometrically and different methods were tested to improve the fluorescence properties of the films. Modification with cucurbit[6]uril (CB6) yields a moderately enhanced fluorescence as well as an improved photostability. The observed effect is most likely due to CB6-induced rigidization of the linker molecules which seems to reduce fluorescence quenching dye–dye and fluorophore–surface interactions. KW - Fluorescence KW - Cucurbituril KW - Surface modification KW - Plasma functionalization KW - Polymer surface KW - Xanthene dyes PY - 2009 U6 - https://doi.org/10.1007/s10895-008-0407-1 SN - 1053-0509 SN - 1573-4994 VL - 19 SP - 229 EP - 237 PB - Plenum Publ. Corp. CY - New York, NY AN - OPUS4-19154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Hoffmann, Katrin A1 - Behnke, Thomas A1 - Ohnesorge, Marius A1 - Resch-Genger, Ute T1 - Polymer- and glass-based fluorescence standards for the near infrared (NIR) spectral region N2 - The widespread use and acceptance of fluorescence techniques especially in regulated areas like medical diagnostics is closely linked to standardization concepts that guarantee and improve the comparability and reliability of fluorescence measurements. At the core of such concepts are dependable fluorescence standards that are preferably certified. The ever rising interest in fluorescence measurements in the near-infrared (NIR) spectral region renders the availability of spectral and intensity standards for this wavelength region increasingly important. This encouraged us to develop approaches to solid NIR standards based upon dye-doped polymers and assess their applicationrelevant properties in comparison to metal ion-doped glasses. The overall goal is here to provide inexpensive, easily fabricated, and robust internal and external calibration tools for a broad variety of fluorescence instruments ranging e.g. from spectrofluorometers over fluorescence microscopes to miniaturized fluorescence sensors. KW - Fluorescence standard KW - PMMA KW - Photostability KW - Perylene KW - Rhodamine 800 KW - Dye-doped polymers KW - Glass KW - Laser dye PY - 2011 U6 - https://doi.org/10.1007/s10895-010-0650-0 SN - 1053-0509 SN - 1573-4994 VL - 21 IS - 3 SP - 953 EP - 961 PB - Plenum Publ. Corp. CY - New York, NY AN - OPUS4-22184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Felbeck, Tom A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Lezhnina, M.M. A1 - Kynast, U.H. T1 - Fluorescent nanoclays: Covalent functionalization with amine reactive dyes from different fluorophone classes and surface group quantification N2 - The ever increasing applications of fluorescence techniques in conjunction with the interest in enhanced detection sensitivities in bioanalysis, biosensing, and bioimaging are closely linked to the rational design of novel nontoxic fluorescent nanomaterials with improved brightness and stability that can be reproducibly synthesized from inexpensive starting materials in simple one-pot reactions and easily surface functionalized. This encouraged us to investigate the potential of the commercially available water-dispersible nanoclay Laponite RD with the empirical formula Na0.7(H2O)n{(Li0.3Mg5.5)[Si8O20(OH)4]}, forming 25 nm sized disk-shaped particles, as nanocarriers for different fluorophores. The Si–OH functions at the rims of these disks can be selectively grafted with 3-aminopropyldimethylethoxysilane (APES), thereby enabling subsequent coupling to amine-reactive molecules ranging from target-specific organic ligands and biomolecules to amine-reactive fluorescent labels. Here, we present different strategies for the surface functionalization of nanoclays and the subsequent quantification of the density of synthetically introduced surface amino groups exploiting analytical methods which rely on different detection schemes including elemental analysis, colorimetric assays, and fluorophore labeling strategies. In this respect, we systematically assess the potential of negatively and positively charged, neutral, and zwitterionic dyes to act as fluorescent labels for amino functionalities at the surface of negatively charged nanoclays. Our studies underline the strong influence of dye charge and aggregation tendency on the brightness of the bound dyes and on surface group quantification. Best results regarding surface group analysis and coupling yield were obtained for a neutral dansyl derivative and fluorescamine. PY - 2015 U6 - https://doi.org/10.1021/acs.jpcc.5b01482 SN - 1932-7447 SN - 1089-5639 VL - 119 IS - 23 SP - 12978 EP - 12987 PB - Soc. CY - Washington, DC AN - OPUS4-33614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Spieles, Monika A1 - Bremser, Wolfram A1 - Resch-Genger, Ute T1 - Narrow-band emitting solid fluorescence reference standard with certified intensity pattern N2 - The development of a lanthanum-phosphate glass doped with several rare-earth-ions for use as solid fluorescence standard is described. The cuvette-shaped reference material which shows a characteristic emission intensity pattern upon excitation at 365 nm consisting of a multitude of relatively narrow emission bands in the wavelength region between 450 nm and 700 nm is intended for the day-to-day performance validation of fluorescence measuring devices. Evaluation of the fluorescent glass include the determination of all properties which can affect its relative emission intensity profile or contribute to the uncertainty of the certified values like absorption spectra, fluorescence anisotropy, excitation wavelength and temperature dependence of the spectroscopic features, homogeneity of fluorophore distribution, photo- and long-term stability. Moreover, a certification procedure was developed including the normalization of the intensity profile consisting of several narrow emission bands and the calculation of wavelength-dependent uncertainties. Criteria for the design, characterization, and working principle of the new reference material BAM-F012 are presented, and possible applications of this ready-to-use fluorescence standard are discussed. PY - 2015 U6 - https://doi.org/10.1021/acs.analchem.5b02209 SN - 0003-2700 SN - 1520-6882 VL - 87 SP - 7204 EP - 7210 PB - American Chemical Society CY - Washington, DC AN - OPUS4-33615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kuhne, Maren A1 - Dippong, Martin A1 - Flemig, Sabine A1 - Hoffmann, Katrin A1 - Petsch, K. A1 - Schenk, J.A. A1 - Kunte, Hans-Jörg A1 - Schneider, Rudolf T1 - Comparative characterization of mAb producing hapten-specific hybridoma cells by flow cytometric analysis and ELISA N2 - A novel method that optimizes the screening for antibody-secreting hapten-specific hybridoma cells by using flow cytometry is described. Cell clones specific for five different haptens were analyzed. We selectively double stained and analyzed fixed hybridoma cells with fluorophore-labeled haptens to demonstrate the target-selectivity, and with a fluorophore-labeled anti-mouse IgG antibody to characterize the level of surface expression of membrane-bound IgGs. ELISA measurements with the supernatants of the individual hybridoma clones revealed that antibodies from those cells, which showed the highest fluorescence intensities in the flow cytometric analysis, also displayed the highest affinities for the target antigens. The fluorescence intensity of antibody-producing cells corresponded well with the produced antibodies' affinities toward their respective antigens. Immunohistochemical staining verified the successful double labeling of the cells. Our method makes it possible to perform a high-throughput screening for hybridoma cells, which have both an adequate IgG production rate and a high target affinity. KW - Immunization KW - Hapten KW - Monoclonal antibodies KW - Hybridoma KW - Flow cytometry KW - ELISA KW - Estradiol KW - Estrone KW - Digoxigenin KW - Zearalenone KW - Aflatoxin KW - CLSM PY - 2014 U6 - https://doi.org/10.1016/j.jim.2014.07.004 SN - 0022-1759 SN - 1872-7905 VL - 413 SP - 45 EP - 56 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-32322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Hoffmann, Angelika A1 - Pauli, Jutta A1 - Spieles, Monika A1 - Brunner, Claudia A1 - Resch-Genger, Ute T1 - Reference Materials for Standardization of Fluorescence-based Measurements N2 - Here, we summerize our efforts concerning new design concepts and examples for fluorescence standards that can provide traceability to radiometric units and present a first step towards a toolbox of fluorescence standards, currently consisting of: i) A first set of liquid fluorescence standards enables the determination of a broad variety of fluorescence parameters was developed and certified by BAM and is distributed by Sigma-Aldrich. ii) Ready-to-use, glass-based fluorescence standards for instrument performance validation (IPV) and determination instrument-to-instrument variations can also be used as wavelength standard for fluorescence instruments with low requirements on spectral resolution and allow monitoring of temporal changes of the wavelength-dependent spectral responsivity. iii) Novel calibration tools and validation concepts for microarray-based platforms used in molecular diagnostics and food safety control. iv) We currently develop reference materials, which can be used as reliable quantum yield standards for relative methods for the determination of QY and can be valuable in the evaluation of the performance and sources of uncertainty of absolute, standard-free methods using e.g. integrating spheres. T2 - 14th Conference on Methods and Applications in Fluorescence CY - Würzburg, Germany DA - 13.09.2015 KW - Fluorescence KW - Standards KW - Quantum yield KW - Microarray PY - 2015 AN - OPUS4-38882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kage, Daniel A1 - Fischer, Linn A1 - Hoffmann, Katrin A1 - Thiele, T. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Close spectroscopic look at dye-stained polymer microbeads N2 - Dye-stained micrometer-sized polymer beads are important tools in the life sciences with applications in biomedical, biochemical, and clinical research. Here, bead-based assays are increasingly used, for example, in DNA sequencing and the detection of autoimmune diseases or pathogenic microorganisms. Moreover, stained beads are employed as calibration tools for fluorescence microscopy and flow cytometry methods with increasing complexity. To address the requirements concerning the relevant fluorescence features, the spectroscopic properties of representative polymer beads with diameters ranging from about 1 to 10 μm stained with varying concentrations of rhodamine 6G were systematically assessed. The observed dependence of the spectral properties, fluorescence decay kinetics, and fluorescence quantum yields on bead size and dye loading concentration is attributed to different fluorescence characteristics of fluorophores located in the particle core and near-surface dye molecules. Supported by the fluorescence anisotropy measurements, the origin of the observed alteration of fluorescence features is ascribed to a combination of excitation energy transfer and polarity-related effects that are especially pronounced at the interface of the bead and the surrounding medium. The results of our studies underline the need to carefully control and optimize all Parameters that can affect the fluorescence properties of the dye-stained beads. KW - Fluorophore KW - Polymer particles KW - Photophysics KW - Life sciences KW - Standards PY - 2018 U6 - https://doi.org/10.1021/acs.jpcc.8b02546 SN - 1932-7447 VL - 122 IS - 24 SP - 12782 EP - 12791 PB - ACS Publications CY - Washington, DC AN - OPUS4-45453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Abbandonato, Gerardo T1 - Determination of quantum yields of semiconductor nanocrystals at the single emitter level via fluorescence correlation spectroscopy N2 - Comparing the photoluminescence (PL) properties of ensembles of nanocrystals like semiconductor quantum dots (QDs) with single particle studies is of increasing interest for many applications of These materials as reporters in bioimaging studies performed under very dilute conditions or even at the single particle level. Particularly relevant is here the PL quantum yield (ΦF), which determines the signal size together with the reporter’s molar extinction coefficient and is a direct measure for nanocrystal quality, especially for the inorganic surface passivation shell and its tightness, which can be correlated also with nanocrystal stability and the possible release of heavy metal ions. Exemplarily for red and green emitting CdTe nanocrystals, we present a method for the determination of ΦF of nanoparticle dispersions at ultralow concentration compared to cuvette measurements using fluorescence correlation spectroscopy (FCS), a single molecule method, and compared to molecular dyes with closely matching spectral properties and known ΦF. Our results underline the potential of this approach, provided that material-inherent limitations like ligand- and QD-specific aggregation affecting particle diffusion and QD drawbacks such as their complex and power-dependent blinking behavior are properly considered as shown here. KW - Semiconductor nanocrystal KW - Quantum dot KW - Quantum yield KW - Fluorescence correlation spectroscopy FCS KW - Single molecule PY - 2018 U6 - https://doi.org/10.1039/c7nr09332b SN - 2040-3364 SN - 2040-3372 VL - 10 IS - 15 SP - 7147 EP - 7154 PB - Royal Society of Chemistry AN - OPUS4-44894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Wegmann, Marc A1 - Hannemann, Mandy A1 - Somma, Valentina A1 - Jochum, Tobias A1 - Niehaus, Jan A1 - Roggenbuck, Dirk A1 - Resch-Genger, Ute T1 - NanoGenotox - Automatable determination of genotoxicity of nanoparticles with DNA-based optical assays N2 - The overall interest in nanotoxicity, triggered by the increasing use of nanomaterials in the material and life sciences, and the synthesis of an ever increasing number of new functional nanoparticles calls for standardized test procedures and for efficient approaches to screen the potential genotoxicity of these materials. Aiming at the development of fast and easy to use, automated microscopic methods for the determination of the genotoxicity of different types of nanoparticles, we assess the potential of the fluorometric γH2AX assay for this purpose. This assay, which can be run on an automated microscopic detection system, relies on the detection of DNA double strand breaks (DSB) as a sign for genotoxicity. Here, we provide first results obtained with broadly used nanomaterials like CdSe/CdS and InP/ZnS quantum dots as well as iron oxide, gold, and polymer particles of different surface chemistry with previously tested colloidal stability and different cell lines like Hep-2 and 8E11 cells, which reveal a dependence of the genotoxicity on the chemical composition as well as the surface chemistry of these nanomaterials. These studies will be also used to establish nanomaterials as positive and negative genotoxicity controls or standards for assay performance validation for users of this fluorometric genotoxicity assay. In the future, after proper validation, this microscopic platform technology will be expanded to other typical toxicity assays. T2 - Nanoworkshop 2018 CY - PTB Berlin-Adlershof, Germany DA - 14.05.2018 KW - Qdots KW - Surface functions KW - Quantification KW - Nanogenotoxicity PY - 2018 AN - OPUS4-45126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nirmalananthan-Budau, Nithiya A1 - Behnke, Thomas A1 - Hoffmann, Katrin A1 - Kage, Daniel A1 - Gers-Panther, Charlotte F. A1 - Frank, Walter A1 - Müller, Thomas J. J. A1 - Resch-Genger, Ute T1 - Crystallization and Aggregation-Induced Emission in a Series of Pyrrolidinylvinylquinoxaline Derivatives N2 - Aggregation-induced emission (AIE) has been meanwhile observed for many dye classes and particularly for fluorophores containing propeller-like groups. Herein, we report on the AIE characteristics of a series of four hydrophobic pyrrolidinylvinylquinoxaline (PVQ) derivatives with phenyl, pyrrolyl, indolyl, and methoxythienyl substituents used to systematically vary the torsion angle between this substituent at the quinoxaline C2 position and the planar PVQ moiety. These molecules, which are accessible via four- or five-component one-pot syntheses, were spectroscopically studied in organic solvents and solvent−water mixtures, as dye aggregates, solids, and entrapped in polystyrene particles (PSP). Steady-state and time-resolved fluorescence measurements revealed a strong fluorescence enhancement for all dyes in ethanol−water mixtures of high water content, accompanying the formation of dye aggregates with sizes of a few hundred nm, overcoming polarity and H-bonding-induced fluorescence quenching of the chargetransfer-type emission of these PVQ dyes. The size and shape of these dye aggregates and the size of the AIE effect are controlled by the water content and the substituent-dependent torsion angle that influences the nucleation process and the packing of the molecules during aggregation. Staining of 1 μm-sized carboxy-functionalized PSP with the PVQ dyes resulted also in a considerable increase in the fluorescence quantum yield and lifetime, reflecting the combined influence of the restricted molecular motion and the reduced polarity of the dye microenvironment. KW - Spectroscopy KW - AIE KW - Aggregates KW - Nanoparticle PY - 2018 U6 - https://doi.org/10.1021/acs.jpcc.8b01425 SN - 1932-7447 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. VL - 122 IS - 20 SP - 11119 EP - 11127 PB - ACS Publications AN - OPUS4-45176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Denißen, M. A1 - Hannen, R. A1 - Itskalov, D. A1 - Biesen, L. A1 - Nirmalananthan-Budau, Nithiya A1 - Hoffmann, Katrin A1 - Reiss, G. J. A1 - Resch-Genger, Ute A1 - Müller, T. J. J. T1 - One-pot synthesis of a white-light emissive bichromophore operated by aggregation-induced dual emission (AIDE) and partial energy transfer N2 - Merocyanine–triarylamine bichromophores are readily synthesized by sequentially Pd-catalyzed insertion alkynylation–Michael–Suzuki four-component reactions. White-light emissive systems form upon aggregation in 1 : 99 and 0.1 : 99.9 vol% CH2Cl2–cyclohexane mixtures, ascribed to aggregation-induced dual emission (AIDE) in combination with partial energy transfer between both chromophore units as supported by spectroscopic studies. KW - Energy transfer KW - Nano KW - Nanoparticle KW - Photoluminescence KW - Fluorescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Dye KW - Enhancement KW - Particle KW - Polarity KW - AIE KW - Aggregation KW - Aggregation-induced emission KW - Solid state emission KW - Merocyanine PY - 2020 U6 - https://doi.org/10.1039/d0cc03451g VL - 56 IS - 54 SP - 7407 PB - Royal Society of Chemistry AN - OPUS4-50936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nirmalananthan-Budau, Nithiya A1 - Budau, J. H. A1 - Moldenhauer, Daniel A1 - Hermann, G. A1 - Kraus, Werner A1 - Hoffmann, Katrin A1 - Paulus, Beate A1 - Resch-Genger, Ute T1 - Substitution pattern controlled aggregation-induced emission in donor-acceptor-donor dyes with one and two propeller-like triphenylamine donors N2 - We present a comparative study of the spectroscopic properties of the donor–acceptor–donor substituted dyes triphenylamine-allylidenemalononitrile-julolidine (TMJ) and triphenylamine-allylidenemalononitriletriphenylamine (TMT), bearing one and two propeller-like triphenylamine donor moieties, in solvents of varying polarity and viscosity and in the aggregated and solid state. Our results reveal control of the aggregation-induced spectroscopic changes and the packing motifs of the dye molecules in the solid state by the chemical nature and structure of the second nitrogen-containing donor, i.e., a planar and a rigid julolidine or a twisted triphenyl group. Assuming that the TMT and TMJ aggregates show a comparable arrangement of the molecules to the respective crystals, these different molecular interactions in the solid state are responsible for aggregation induced emission (AIE) in the case of TMT and its absence for TMJ. Moreover, a versatile strategy for the fluorescence enhancement of only weakly emissive AIE dyes is shown, turning these dyes into bright nanoscale fluorescent reporters by using them as stains for preformed polymer particles. KW - Nano KW - Nanoparticle KW - Photoluminescence KW - Fluorescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Dye KW - Enhancement KW - Particle KW - Polarity KW - AIE KW - Aggregation KW - Aggregation-induced emission KW - Solid state emission PY - 2020 U6 - https://doi.org/10.1039/d0cp00413h VL - 22 IS - 25 SP - 14142 EP - 14154 AN - OPUS4-50967 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biesen, L. A1 - Nirmalananthan-Budau, Nithiya A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Müller, T. J. J. T1 - Solid-State Emissive Aroyl-S,N-Ketene Acetals with Tunable N2 - N-Benzyl aroyl-S,N-ketene acetals can be readily synthesized by condensation of aroyl chlorides and N-Benzyl 2-methyl benzothiazolium salts in good to excellent yields, yielding a library of 35 chromophores with bright solid-state emission and aggregation-induced emission characteristics. Varying the substituent from electron-donating to electronwithdrawing enables the tuning of the solid-state emission Color from deep blue to red. KW - Nano KW - Nanoparticle KW - Photoluminescence KW - Fluorescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - dye KW - Enhancement KW - Particle KW - Polarity KW - AIE KW - Aggregation KW - Aggregation-induced emission KW - Solid state emission PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-509072 VL - 59 IS - 25 SP - 10037 EP - 10041 PB - Wiley Online Libary AN - OPUS4-50907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute T1 - Fluorescence calibration standards made from broadband emitters encapsulated in polymer beads for fluorescence microscopy and flow cytometry N2 - We present here the design and characterization of a set of spectral calibration beads. These calibration beads are intended for the determination and regular control of the spectral characteristics of fluorescence microscopes and other fluorescence measuring devices for the readout of bead-based assays. This set consists of micrometer-sized polymer beads loaded with dyes from the liquid Calibration Kit Spectral Fluorescence Standards developed and certified by BAM for the wavelength-dependent Determination of the spectral responsivity of fluorescencemeasuring devices like spectrofluorometers. To cover the wavelength Region from 400 to 800 nm, two new near-infrared emissive dyes were included, which were spectroscopically characterized in solution and encapsulated in the beads. The resulting set of beads presents the first step towards a new platform of spectral calibration beads for the determination of the spectral characteristics of fluorescence instruments like fluorescence microscopes, FCM setups, and microtiter plate readers, thereby meeting the increasing demand for reliable and comparable fluorescence data especially in strongly regulated areas, e.g., medical diagnostics. This will eventually provide the basis for standardized calibration procedures for imaging systems as an alternative to microchannel slides containing dye solutions previously reported by us. KW - Fluorescence standard KW - Fluorescence KW - Dye KW - Microscopy KW - Bead KW - Particle KW - NIR KW - calibration KW - Quality assurance KW - Traceability PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-508117 SN - 1618-2642 VL - 412 IS - 24 SP - 6499 EP - 6507 PB - Springer AN - OPUS4-50811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brunner, Claudia A1 - Hoffmann, Katrin A1 - Thiele, T. A1 - Schedler, U. A1 - Jehle, H. A1 - Resch-Genger, Ute T1 - Novel calibration tools and validation concepts for microarray-based platforms used in molecular diagnostics and food safety control N2 - Commercial platforms consisting of ready-to-use microarrays printed with target-specific DNA probes, a microarray scanner, and software for data analysis are available for different applications in medical diagnostics and food analysis, detecting, e.g., viral and bacteriological DNA sequences. The transfer of these tools from basic research to routine analysis, their broad acceptance in regulated areas, and their use in medical practice requires suitable calibration tools for regular control of instrument performance in addition to internal assay controls. Here, we present the development of a novel assay-adapted calibration slide for a commercialized DNA-based assay platform, consisting of precisely arranged fluorescent areas of various intensities obtained by incorporating different concentrations of a 'green' dye and a 'red' dye in a polymer matrix. These dyes present 'Cy3' and 'Cy5' analogues with improved photostability, chosen based upon their spectroscopic properties closely matching those of common labels for the green and red channel of microarray scanners. This simple tool allows to efficiently and regularly assess and control the performance of the microarray scanner provided with the biochip platform and to compare different scanners. It will be eventually used as fluorescence intensity scale for referencing of assays results and to enhance the overall comparability of diagnostic tests. KW - New reference material KW - Microarray KW - Fluorescence KW - Standard KW - Calibration slide PY - 2015 U6 - https://doi.org/10.1007/s00216-014-8450-z SN - 1618-2642 SN - 1618-2650 VL - 407 IS - 11 SP - 3181 EP - 3191 PB - Springer CY - Berlin AN - OPUS4-32580 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Nirmalananthan-Budau, Nithiya A1 - Wegmann, M. A1 - Resch-Genger, Ute T1 - Calibration Beads for the Characterization of the Performance of Fluorescence-based High- Throughput and Imaging devices N2 - In all fluorescence-based techniques, the measured signals contain not only sample-related but also instrument-specific contributions, which limit the direct comparison of fluorescence data obtained e.g. on different devices or at different times and often hamper quantification. To rule out instrumentation as major source of variability of emission data, accepted fluorescence standards and procedures for the control of instrument specifications and long-term performance are required. For flow cytometry (FCM), a broad variety of fluorophore-stained polymer beads differing in emission wavelength and intensity is available for the testing of the alignment, sensitivity, and other parameters of FCM. These calibration tools are intended to facilitate the assessment of instrument performance to ensure reliable measurements and to improve the comparability of FCM experiments. As a step towards an improved comparability of fluorescence data, with special emphasis on spectroscopic methods measuring nano- and micrometer-sized fluorescent objects, we are currently developing a set of fluorescent polystyrene (PS) beads loaded with luminophores from the certified BAM-Kit “Spectral fluorescent standards”, initially developed for the calibration of fluorescence spectrometers. Here, we present first results from studies of these fluorophore-loaded polymer beads. Moreover, new beads are made to supplement this kit by encapsulating near-infrared (NIR)-emissive luminophores in PS beads to cover the UV/VIS, and NIR wavelength range. These beads are designed for calibration of flow cytometers and other fluorescence imaging systems to meet the increasing demand for reliable and comparable fluorescence data especially in strongly regulated areas like e.g. medical diagnostics. T2 - 29th Annual Conference of the German Society for Cytometry CY - Berlin, Germany DA - 25.09.2019 KW - Calibration beads KW - Fluorescence KW - Performance validation KW - imaging KW - FCM PY - 2019 AN - OPUS4-49422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rietsch, P. A1 - Soyka, J. A1 - Brülls, S. A1 - Er, J. A1 - Hoffmann, Katrin A1 - Beerhues, J. A1 - Sakar, B. A1 - Resch-Genger, Ute A1 - Eigler, S. T1 - Fluorescence of a chiral pentaphene derivative derived from the hexabenzocoronene Motif N2 - A new fluorescent pentaphene derivative is presented that differs from hexabenzocoronene (HBC) by one carbon atom in the basal plane skeleton. A 500% increased fluorescence quantum yield is measured compared to the HBC derivative. The pentaphene compound, obtained by a modified Scholl oxidation, is also emissive in the solid-state, due to the packing motif in the crystal. KW - Hexabenzocoronenes KW - Pentaphenes KW - Solid-state fluorescence PY - 2019 U6 - https://doi.org/10.1039/c9cc05451k SN - 1364-548X N1 - Corrigendum: Chemical Communications 55 (2019) 12879 VL - 55 IS - 71 SP - 10515 EP - 10518 PB - The Royal Society of Chemistry AN - OPUS4-48908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Wachtendorf, Volker A1 - Elert, Anna Maria A1 - Falkenhagen, Jana A1 - Becker, Roland A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Tschiche, Harald A1 - Reinsch, Stefan A1 - Weidner, Steffen ED - Scholz, Philipp T1 - Analytical toolset to characterize polyurethanes after exposure to artificial weathering under systematically varied moisture conditions N2 - Polyether and -ester urethanes (PU) were exposed to artificial weathering at 40 °C and artificial UV radiation in a weathering chamber. In 3 parallel exposures, humidity was varied between dry, humid, and wet conditions. Material alteration was investigated by various analytical techniques like size exclusion chromatography (SEC), liquid chromatography-infrared spectroscopy (LC-FTIR), thermal-desorption gas chromatography-mass spectrometry (TD-GC-MS), fluorescence mapping and dynamic mechanical analysis (DMA). Our results show that depending on the weathering conditions, different degradation effects can be observed. By means of SEC an initial strong decrease of the molar masses and a broadening of the mass distributions was found. After a material dependent time span this was followed by a plateau where molar mass changes were less significant. A minor moisture-dependent degradation effect was only found for polyester PU. Fluorescence measurements on two materials revealed an increase in the luminescence intensity upon weathering process reaching a saturation level after about 500 h. The changes in the optical properties observed after different exposure conditions and times were very similar. The TD-GC-MS data showed the fate of the stabilizers and antioxidant in the course of weathering. LC-FTIR measurements revealed a change in peak intensities and the ratio of urethane and carbonyl bands. KW - Polyurethane KW - Artificial weathering KW - Moisture KW - Crosslinking KW - Degradation PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S0142941819303708 U6 - https://doi.org/10.1016/j.polymertesting.2019.105996 SN - 0142-9418 VL - 78 SP - 105996, 1 EP - 9 PB - Elsevier CY - Amsterdam AN - OPUS4-48625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Wegmann, Marc A1 - Jochum, T. A1 - Somma, V. A1 - Sowa, M. A1 - Scholz, J. A1 - Fröhlich, E. A1 - Hoffmann, Katrin A1 - Niehaus, J. A1 - Roggenbuck, D. A1 - Resch-Genger, Ute T1 - An automatable platform for genotoxicity testing of nanomaterials based on the fluorometric γ-H2AX assay reveals no genotoxicity of properly surface-shielded cadmium-based quantum dots N2 - The large number of nanomaterial-based applications emerging in the materials and life sciences and the foreseeable increasing use of these materials require methods that evaluate and characterize the toxic potential of these nanomaterials to keep safety risks to people and environment as low as possible. As nanomaterial toxicity is influenced by a variety of parameters like size, shape, chemical composition, and surface chemistry, high throughput screening (HTS) platforms are recommended for assessing cytotoxicity. Such platforms are not yet available for genotoxicity testing. Here, we present first results obtained for application-relevant nanomaterials using an automatable genotoxicity platform that relies on the quantification of the phosphorylated histone H2AX (γ-H2AX) for detecting DNA double strand breaks (DSBs) and the automated microscope system AKLIDES® for measuring integral fluorescence intensities at different excitation wavelengths. This platform is used to test the genotoxic potential of 30 nm-sized citrate-stabilized gold nanoparticles (Au-NPs) as well as micellar encapsulated iron oxide nanoparticles (FeOx-NPs) and different cadmium (Cd)-based semiconductor quantum dots (QDs), thereby also searching for positive and negative controls as reference materials. In addition, the influence of the QD shell composition on the genotoxic potential of these Cd-based QDs was studied, using CdSe cores as well as CdSe/CdS core/shell and CdSe/CdS/ZnS core/shell/shell QDs. Our results clearly revealed the genotoxicity of the Au-NPs and its absence in the FeOx-NPs. The genotoxicity of the Cd-QDs correlates with the shielding of their Cd-containing core, with the core/shell/shell architecture preventing genotoxicity risks. The fact that none of these nanomaterials showed cytotoxicity at the chosen particle concentrations in a conventional cell viability assay underlines the importance of genotoxicity studies to assess the hazardous potential of nanomaterials. KW - Nanomaterial KW - Genotoxicity testing KW - γ-H2AX assay KW - Quantum dot PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-486318 SN - 2040-3372 SN - 2040-3364 VL - 11 IS - 28 SP - 13458 EP - 13468 PB - The Royal Society of Chemistry AN - OPUS4-48631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Borcherding, H. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Lifetime encoding in flow cytometry for bead‑based sensing of biomolecular interaction N2 - To demonstrate the potential of time-resolved flow cytometry (FCM) for bioanalysis, clinical diagnostics, and optically encoded bead-based assays, we performed a proof-of-principle study to detect biomolecular interactions utilizing fluorescence lifetime (LT)-encoded micron-sized polymer beads bearing target-specific bioligands and a recently developed prototype lifetime flow cytometer (LT-FCM setup). This instrument is equipped with a single excitation light source and different fluorescence detectors, one operated in the photon-counting mode for time-resolved measurements of fluorescence decays and three detectors for conventional intensity measurements in different spectral windows. First, discrimination of bead-bound biomolecules was demonstrated in the time domain exemplarily for two targets, Streptavidin (SAv) and the tumor marker human chorionic gonadotropin (HCG). In a second step, the determination of biomolecule concentration levels was addressed representatively for the inflammation-related biomarker tumor necrosis factor (TNF-α) utilizing fluorescence intensity measurements in a second channel of the LT-FCM instrument. Our results underline the applicability of LT-FCM in the time domain for measurements of biomolecular interactions in suspension assays. In the future, the combination of spectral and LT encoding and multiplexing and the expansion of the time scale from the lower nanosecond range to the longer nanosecond and the microsecond region is expected to provide many distinguishable codes. This enables an increasing degree of multiplexing which could be attractive for high throughput screening applications. KW - Fluorescence KW - Sensor KW - Assay KW - Protein KW - Multiplexing KW - Flow cytometry KW - Barcoding KW - Lifetime KW - Dye KW - Bead KW - Bead-based assay KW - Method KW - Quantification PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-516007 VL - 10 IS - 1 SP - 19477 PB - Nature AN - OPUS4-51600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rietsch, P. A1 - Sobottka, S. A1 - Hoffmann, Katrin A1 - Hildebrandt, P. A1 - Sarkar, B. A1 - Resch-Genger, Ute A1 - Eigler, S. T1 - Identification of the Irreversible Redox Behavior of Highly Fluorescent Benzothiadiazoles N2 - Redox switches are applied in various fields of research, including molecular lifts, electronic devices and sensors. Switching the absorbance between UV and Vis/NIR by redox processes is of interest for applications in light harvesting or biomedicine. Here, we present a series of push-pull benzothiadiazole derivatives with high fluorescence quantum yields in solution and in the crystalline solid state. Spectroelectrochemical analysis reveals the switching of UV-absorption in the neutral state to Vis/NIR absorption in the reduced state. We identify the partial irreversibility of the switching process, which appears to be reversible on the cyclic voltammetry timescale. KW - Redox switch KW - Electrochemistry KW - Dye KW - Fluorescence KW - Absorption KW - Sensor KW - Benzothiadiazole PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-520865 SN - 2367-0932 VL - 4 IS - 9 SP - 668 EP - 673 PB - Wiley Online Library AN - OPUS4-52086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rietsch, P. A1 - Zeyat, M. A1 - Hübner, Oskar A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Kutter, M. A1 - Paskin, A. A1 - Uhlig, J. A1 - Lentz, D. A1 - Eigler, S. T1 - Substitution Pattern-Controlled Fluorescence Lifetimes of Fluoranthene Dyes N2 - The absorption and emission properties of organic dyes are generally tuned by altering the substitution pattern. However, tuning the fluorescence lifetimes over a range of several 10 ns while barely affecting the spectral features and maintaining a moderate fluorescence quantum yield is challenging. Such properties are required for lifetime multiplexing and barcoding applications. Here, we show how this can be achieved for the class of fluoranthene dyes, which have substitution-dependent lifetimes between 6 and 33 ns for single wavelength excitation and emission. We explore the substitution-dependent emissive properties in the crystalline solid state that would prevent applications. Furthermore, by analyzing dye mixtures and embedding the dyes in carboxyfunctionalized 8 μm-sized polystyrene particles, the unprecedented potential of these dyes as labels and encoding fluorophores for time-resolved fluorescence detection techniques is demonstrated. KW - Fluorescence KW - Label KW - Fluoranthene KW - Quantum yield KW - Reporter KW - Crystal KW - Encoding KW - Multiplexing KW - Particle KW - Bead KW - Lifetime KW - Dye KW - Barcoding PY - 2021 U6 - https://doi.org/10.1021/acs.jpcb.0c08851 SN - 1520-5207 VL - 125 IS - 4 SP - 1207 EP - 1213 PB - American Chemical Society AN - OPUS4-52087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Nifontova, G. A1 - Krivenkov, V. A1 - Sukhanova, A. A1 - Nabiev, I. A1 - Resch-Genger, Ute T1 - Tempo-spectral multiplexing in flow cytometry with lifetime detection using QD-encoded polymer beads N2 - Semiconductor quantum dots (QDs) embedded into polymer microbeads are known to be very attractive emitters for spectral multiplexing and colour encoding. Their luminescence lifetimes or decay kinetics have been, however, rarely exploited as encoding parameter, although they cover time ranges which are not easily accessible with other luminophores. We demonstrate here the potential of QDs made from II/VI semiconductors with luminescence lifetimes of several 10 ns to expand the lifetime range of organic encoding luminophores in multiplexing applications using time-resolved flow cytometry (LT-FCM). For this purpose, two different types of QD-loaded beads were prepared and characterized by photoluminescence measurements on the ensemble level and by single-particle confocal laser scanning microscopy. Subsequently, these lifetime-encoded microbeads were combined with dye-encoded microparticles in systematic studies to demonstrate the potential of these QDs to increase the number of lifetime codes for lifetime multiplexing and combined multiplexing in the time and colour domain (tempo-spectral multiplexing). These studies were done with a recently developed novel luminescence lifetime flow cytometer (LT-FCM setup) operating in the time-domain, that presents an alternative to reports on phase-sensitive lifetime detection in flow cytometry. KW - Fluorescence life time KW - Flow cytometry KW - Lifetime-encoded beads KW - Quantum dots KW - Multiplexing PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-503316 VL - 10 IS - 1 SP - Article number: 653 PB - nature.com AN - OPUS4-50331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Tschiche, Harald Rune A1 - Resch-Genger, Ute T1 - Fluorescence microscopic and spectroscopic monitoring of degradation processes upon polymer ageing N2 - The majority of all routinely used methods to assess polymer aging are based on destructive tests and methods. Early indicators for the deterioration of polymer materials are e.g., physical or mechanical properties like tensile strength, adhesion, brittleness, and color. It is well-known, however, that predominantly chemical changes are the underlying process of the physical changes that occur in organic materials upon aging over time. Typical initial steps during polymer degradation are crosslinking or chain breaking, alteration of autofluorescence, “yellowing” or bleaching caused by the formation of new functional groups. A straightforward strategy towards the sensitive detection and monitoring of chemical changes in the course of polymer aging is based on non-destructive optical measurements. Luminescence techniques, one of the most sensitive spectroscopic methods are the method of choice. Here, we present first results of luminescence-based monitoring of polymer degradation induced by different environmentally relevant weathering factors (e.g. humidity and UV exposure). Our studies include fluorescence spectroscopy as well as spectral scanning confocal fluorescence microscopy and clearly demonstrate the possibility to follow accelerate-aging processes by luminescence detection. T2 - Focus on Microscopy 2017 CY - Bordeaux, France DA - 09.04.2017 KW - Polymer aging KW - Confocal fluorescence microscopy KW - Fluorescence spectroscopy KW - Surface functionalities PY - 2017 AN - OPUS4-40274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Denißen, M. A1 - Nirmalananthan-Budau, Nithiya A1 - Behnke, Thomas A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Müller, T. J. J. T1 - 3-Piperazinyl propenylidene indolone merocyanines: consecutive three-component synthesis and electronic properties of solid-state luminophores with AIE properties N2 - A series of twelve 3-piperazinyl propenylidene indolone merocyanines was synthesized in a one-pot fashion using a consecutive three-component insertion-coupling-Michael addition sequence. Physicalorganic treatment of the absorption data of a consanguineous series of this library allows semiquantitative Linear Free Energy Relationships (LFERs) to be established and confirmation of the positive Absorption solvatochromicity. All Boc-substituted piperazinyl merocyanines display aggregation induced Emission (AIE), which was corroborated for two solvent systems. In particular, crystallization-induced Emission enhancement (CIEE) induced by ultrasonication could be shown for a model chromophore by confocal laser scanning microscopy (CLSM). KW - Indolone merocyanines KW - AIE KW - CIEE KW - CLSM PY - 2017 U6 - https://doi.org/10.1039/c7qm00198c SN - 2052-1537 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. VL - 1 IS - 10 SP - 2013 EP - 2026 AN - OPUS4-43213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dippong, Martin A1 - Carl, Peter A1 - Lenz, C. A1 - Schenk, J. A. A1 - Hoffmann, Katrin A1 - Schwaar, Timm A1 - Schneider, Rudolf A1 - Kuhne, Maren T1 - Hapten-specific single-cell selection of hybridoma clones by fluorescence-activated cell sorting for the generation of monoclonal antibodies N2 - The conventional hybridoma screening and subcloning process is generally considered to be one of the most critical steps in hapten-specific antibody production. It is time-consuming, monoclonality is not guaranteed, and the number of clones that can be screened is limited. Our approach employs a novel hapten-specific labeling technique of hybridoma cells. This allows for fluorescence-activated cell sorting (FACS) and single-cell deposition and thereby eliminates the above-mentioned problems. A two-step staining approach is used to detect antigen specificity and antibody expression: in order to detect antigen specificity, hybridoma cells are incubated with a hapten−horseradish peroxidase conjugate (hapten−HRP), which is subsequently incubated with a fluorophore-labeled polyclonal anti-peroxidase antibody (anti-HRP−Alexa Fluor 488). To characterize the expression of membrane-bound immunoglobulin G (IgG), a fluorophore-labeled anti-mouse IgG antibody (anti-IgG−Alexa Fluor 647) is used. Hundreds of labeled hybridoma cells producing monoclonal antibodies (mAbs) specific for a hapten were rapidly isolated and deposited from a fusion mixture as single-cell clones via FACS. Enzyme-linked immunosorbent assay (ELISA) measurements of the supernatants of the sorted hybridoma clones revealed that all hapten-specific hybridoma clones secrete antibodies against the target. There are significant improvements using this high-throughput technique for the generation of mAbs including increased yield of antibody-producing hybridoma clones, ensured monoclonality of sorted cells, and reduced development times. KW - Monoclonal antibodies KW - FACS KW - Hybridoma cells PY - 2017 U6 - https://doi.org/10.1021/acs.analchem.6b04569 SN - 0003-2700 SN - 1520-6882 VL - 89 IS - 7 SP - 4007 EP - 4012 PB - ACS Publications AN - OPUS4-40320 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Wittkamp, M. A1 - Ameskamp, J. A1 - Göhde, W. A1 - Resch-Genger, Ute T1 - Luminescence lifetime encoding in time-domain flow cytometry N2 - Time-resolved flow cytometry represents an alternative to commonly applied spectral or intensity multiplexing in bioanalytics. At present, the vast majority of the reports on this topic focuses on phase-domain techniques and specific applications. In this report, we present a flow cytometry platform with time-resolved detection based on a compact setup and straightforward time-Domain measurements utilizing lifetime-encoded beads with lifetimes in the nanosecond range. We provide general assessment of time-domain flow cytometry and discuss the concept of this platform to address achievable resolution limits, data analysis, and requirements on suitable encoding dyes. Experimental data are complemented by numerical calculations on photon count numbers and impact of noise and measurement time on the obtained lifetime values. KW - Flow cytometry KW - Fluorescence KW - Life sciences KW - Lifetime encoding KW - Polymer particles PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-465765 SN - 2045-2322 VL - 8 IS - 1 SP - 16715, 1 EP - 11 PB - Nature CY - London AN - OPUS4-46576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Pauli, Jutta A1 - Resch-Genger, Ute T1 - Fluorescence intensity and quantum yield reference materials for standardization of fluorescence-based measurements N2 - Luminescence techniques are amongst the most commonly used analytical methods in life and material sciences due to their high sensitivity, nondestructive character, and easy instrumentation suitable for miniaturization. Photoluminescence signals are, however, affected by wavelength-, polarization-, and time-dependent instrument-related effects. Thus, at the core of standardization approaches for all fluorescence-based techniques are evaluated fluorescence standards for the consideration of instrument-specific spectral and intensity distortions of measured signals and for instrument performance validation (IPV). Here, we summarize the research of BAM division 1.2 on development of liquid and solid fluorescence standards for various application-relevant fluorescence parameters and techniques. The portfolio of BAM fluorescence reference materials presently consists of: i) a Spectral Fluorescence Standard Kit, i.e., a set of liquid fluorescence standards with certified normalized corrected emission spectra, for the determination of a broad variety of fluorescence parameters ii) a ready-to-use, glass-based multi-emitter fluorescence standard for IPV and the determination of instrument-to-instrument variations iii) specially adapted calibration tools and validation concepts for microarray-based platforms used in molecular diagnostics and food safety control iv) quantum yield (Φf) standards for relative determination of the key performance parameter Φf of fluorescent materials, which can be also used for the evaluation of the performance of absolute, standard-free methods utilizing integrating sphere setups or spectrometer accessories. These materials, that will eventually cover the ultraviolet, visible, and near infrared spectral region, are currently under certification. This toolbox of method-adapted reference materials can perfectly complement existing fluorescence standards. These easy-to-use, reference materials can pave the way to traceable fluorescence measurements to a radiometric scale like the spectral radiance or spectral photon radiance for all users of fluorescence techniques in material sciences and analysis, as well as environmental monitoring and biotechnology. They are particularly useful for customers working in strongly regulated areas like medical diagnostics or pharmaceutical research, where certified standards in conjunction with validated standard operating procedures are mandatory. T2 - International Symposium on Biological and Environmental Reference Materials BERM-15 CY - Berlin, Germany DA - 23.09.2018 KW - Reference materials KW - Fluorescence standards PY - 2018 AN - OPUS4-47140 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -