TY - JOUR A1 - Meng, Birgit A1 - Müller, Urs A1 - Garcia, O. A1 - Malaga, Katarina T1 - Performance of a new anti-graffiti agent used for immovable cultural heritage objects N2 - Cultural Heritage objects are in many cases invaluable and irrecoverable, therefore their protection is a prior goal. One threat arises by intentionally defacing such objects with graffiti. One possibility to face the imminent threat is the application of a surface protection in form of anti-graffiti systems (AGS). However, the knowledge about the performance and durability of AGS on substrates used for historical buildings is still fragmented. The goal of the presented study was to investigate the performance of a newly developed agent in comparison to a selection of commercial anti-graffiti agents on different substrates, which were used for historical buildings. Four commercial anti-graffiti agents with different chemical formulations were selected and tested with the new agent on different stone and brick substrates. The results showed clearly that AGS based on dense, water vapour impermeable coatings are not suitable to porous substrates such as sandstone, brick or porous limestone due to their impair of the hygric properties and the visual appearance of a substrate. The new agent could not completely reach the cleaning efficacy of the dense coatings but exhibited a much lower impact on the properties of the substrate and was therefore better compatible to historical surfaces. KW - Graffiti KW - Cultural Heritage KW - Anti-graffiti agent KW - Performance KW - Stone KW - Brick KW - Cleaning efficacy KW - Compatibility PY - 2014 U6 - https://doi.org/10.1080/15583058.2012.747116 SN - 1558-3058 SN - 1558-3066 VL - 8 IS - 6 SP - 820 EP - 834 PB - Taylor & Francis CY - Philadelphia, Pa., USA AN - OPUS4-28605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fontana, Patrick A1 - Müller, Urs A1 - Malaga, Katarina A1 - Lagerblad, B. A1 - Meng, Birgit T1 - Precast concrete facade elements with low embodied energy N2 - Concrete is by far the most common building material in the world. Due to its good durability it is widely used in building envelopes. One major part of the embodied energy in concrete comes from the production of Portland cement that consumes around 3,500 MJ energy per each ton of cement. Globally 2.6 billion tons of Portland cement is produced and the consumption is increasing. Since concrete will be used as main building material also in future construction, it is reasonable to develop concrete building components with lower embodied energy.Using the example of an ultra-high performance concrete (UHPC) façade element, it is demonstrated how the embodied energy can be reduced by application of hydrothermal curing. T2 - ENBRI Workshop - reaching the nearly zero-energy goal for buildings CY - Boras, Sweden DA - 04.04.2011 KW - UHPC KW - Betonfertigteil KW - Fassaden KW - Autoklavierung KW - Nachhaltigkeit PY - 2011 SN - 978-91-86622-51-0 SN - 0284-5172 SP - 1 EP - 8 AN - OPUS4-23628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -